1、“.....引入了颗粒最大成长度的概念,也就是说代表在定的水流条件下,能形成最大粒径的原始颗粒数。丹保教授通过试验得出,在原水水质条件不变时,是有效能量消耗率ε或速度梯度的函数。通过对絮凝过程中些主要现象的分析,包括颗粒的碰撞,因碰撞产生的聚集絮凝体尺寸的限制以及水流对絮凝体的剪切,我们得到了可用真实水样模拟水质特征以及用值模拟水流特征这样两个关系。采用值来模拟絮凝池的水流絮凝特征......”。
2、“.....是可以把真实絮凝池的研究缩小到在实验室内进行,也就是只要维持实验条件的值与真实池相同。其结果也应相同。另是可以用作不同絮凝形式的比较,也就是即使絮凝池的水流形态相差甚大,只要其过程的值相同,当然还应考虑不同絮凝池形式有效能量利用的差别效果也应相同。假设和设想作为研究的方法可以是微观的,也可以是宏观的。大多理论研究都以微粒作为对象。由于实际的原水是由不同颗粒所组成,不仅粒径呈定分布,而且其性质也各不相同......”。
3、“.....同样存在个断面内的速度梯度各不相同。可能在同时刻同断面上,既有颗粒的絮凝,又有颗粒的破碎。因此,采用微粒的分析方法,问题要复杂的多。甚至在很多情况下难以办到。微观现象的分析,可以帮助我们对问题的考虑如前节所作的那样,但试验还应以整个悬浊液在絮凝过程中的平均效果作代表。这样,我们就不必去分析诸如颗粒大小的组成分布,断面各点的速度梯度分布以及絮凝颗粒的沉速分布等等......”。
4、“.....对于絮凝效果的评价,般可以采用颗粒粒径颗粒沉速以及沉淀后浊度去除率等来表示。无论是颗粒粗径的加大,沉速的加快以及沉淀后浊度去除率的增加都能反映絮凝效果的提高。在理论研究方面,般以粒径为指标的居多。许多理论公式都与粒径有关。对于后续处理的沉淀计算来说,采用沉速的概念较为有利。因为沉淀池设计希望提供反应后的沉速数据。然而对于测定来说,采用浊度指标最为方便。实际上这三个指标都是相互关联的......”。
5、“.....为了探讨方便起见,我们在研究设想方案时,仍以平均沉速作为指标而作为实验的手段,则以沉淀后浊度去除率为指标。此外,我们还作了个假设,就是由不同方式获得相同絮凝效果的悬浊液,在其进步作絮凝反应时,应获得同样的结果,例如采用值的速度梯度反应时间后,得到了悬浊液的平均沉速为,而用另值反应时间后也可得到平均沉速为,我们就认为这二者效果相同,同时,尽管它们形成的条件各不相同,但在进步絮凝时......”。
6、“.....根据以上对絮凝过程以及基本假设的分析,我们就可以进而讨论絮凝池合理设计的设想方案。如果把单位体积中颗粒所占的比例用来表示,即.则参照式.及式.,并假定颗粒的每次碰撞均产生聚集,那么颗粒浓度的时间变化率就应为.式中取决于和,即。将式.积分,可得.式中絮凝时间为时的颗粒总浓度单位。絮凝开始时的颗粒总浓度单位。假如絮凝过程中密度保持不变,即固定,则上式可换算成粒径的变化关系。即.式中时间时的颗粒粒径单位......”。
7、“.....也就是说,如果颗粒的每次碰撞均属有效,则其粒径的增长或相应沉速的增长理论上应如图所示的形式。粒径或沉速随时间呈指数关系增加,其增长的速率取决于值。即越大增长速率越快,与水流的速度梯度及原水颗粒体积比成正比。因此当值增加。或者颗粒浓度增加时,粒径或沉速的增长就迅速。图理论曲线图图所示为理论曲线,然而,根据般搅拌试验的结果,所得图形与图有很大出入,大致得到象图实线所示的曲线。也就是说,在维持值不变情况下......”。
8、“.....在开始时或开始以后较短时间,沉速增长形式与理论曲线大致相似。但以后其增长率不仅不是逐步增加,相反出现逐步减小,最后趋向于极值。我们不妨称为值时的极限沉速。例如,在作般反应的搅拌试验时,最初分钟效果增长较明显。然而超过分钟以后其反应效果般很少有明显增加。如果不改变搅拌速度,那么即使搅拌分钟或分钟,其结果往往不会有什么变化。产生理论曲线与试验曲线不致的原因,很容易得到介释......”。
9、“.....实际上颗粒碰撞时不仅不定聚集,而且还可能被破碎。图中阴影部分实际上代表了碰撞中的无效和破碎部分。由于与絮凝结果的沉速相比是微小的,故般可略而不计。图试验曲线图但是图的试验曲线是用同水质同值试验的结果。如果改变值,情况就会不同。实际上在进行搅拌试验时,用肉眼也可发现。在经定时间搅拌后,停止浆板的转动,由于水流的惯性,液体仍在旋转。但值显然逐渐减小......”。
A2-桨板部件图.dwg
(CAD图纸)
A2-絮凝池.dwg
(CAD图纸)
A2-装配图.dwg
(CAD图纸)
A3-机架部装图.dwg
(CAD图纸)
A3-水下轴承座部装图.dwg
(CAD图纸)
A3-主轴.dwg
(CAD图纸)
搅拌器的设计.doc
开题报告.doc