重卡贯通式驱动桥结构设计摘要局部集中载荷时,往往会使端经常是大端沿斜向产生齿端折断。各种形式的过载折断的断面均为粗糙的新断面。为了防止轮齿折断,应使其具有足够的弯曲强度,并选择适当的模数压力角齿高及切向修正量良好的齿轮材料及保证热处理质量等。齿根圆角尽可能加大,根部及齿面要光洁。齿面的点蚀及剥落齿面的疲劳点蚀及剥落是齿轮的主要破坏形式之,约占损坏报废齿轮的以上。它主要由于表面接触强度不足而引起的。点蚀是轮齿表面多次高压接触而引起的表面疲劳的结果。由于接触区产生很大的表面接触应力,常常在节点附近,特别在小齿轮节圆以下的齿根区域内开始,形成极小的齿面裂纹进而发展成浅凹坑,形成这种凹坑或麻点的现象就称为点蚀。般首先产生在几个齿上。在齿轮继续工作时,则扩大凹坑的尺寸及数目,甚至会逐渐使齿面成块剥落,引起噪音和较大的动载荷。在最后阶段轮齿迅速损坏或折断。减小齿面压力和提高润滑效果是提高抗点蚀的有效方法,为此可增大节圆直径及增大螺旋角,使齿面的曲率半径增大,减小其接触应力。在允许的范围内适当加大齿面宽也是种办法。齿面剥落发生在渗碳等表面淬硬的齿面上,形成沿齿面宽方向分布的较点蚀更深的凹坑。凹坑壁从齿表面陡直地陷下。造成齿面剥落的主要原因是表面层强度不够。例如渗碳齿轮表面层太薄心部硬度不够等都会引起齿面剥落。当渗碳齿轮热处理不当使渗碳层中含碳浓度的梯度太陡时,则部分渗碳层齿面形成的硬皮也将从齿轮心部剥落下来。齿面胶合在高压和高速滑摩引起的局部高温的共同作用下,或润滑冷却不良油膜破坏形成金属齿表面的直接摩擦时,因高温高压而将金属粘结在起后又撕下来所造成的表面损坏现象和擦伤现象称为胶合。它多出现在齿顶附近,在与节锥齿线的垂直方向产生撕裂或擦伤痕迹。轮齿的胶合强度是按齿面接触点的临界温度而定,减小胶合现象的方法是改善润滑条件等。齿面磨损这是轮齿齿面间相互滑动研磨或划痕所造成的损坏现象。规定范围内的正常磨损是允许的。研磨磨损是由于齿轮传动中的剥落颗粒装配中带入的杂物,如未清除的型砂氧化皮等以及油中不洁物所造成的不正常磨损,应予避免。汽车主减速器及差速器齿轮在新车跑合期及长期使用中按规定里程更换规定的润滑油并进行清洗是防止不正常磨损的有效方法。汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳折断和由表面点蚀引起的剥落。在要求使用寿命为万千米或以上时,其循环次数均以超过材料的耐久疲劳次数。因此,驱动桥齿轮的许用弯曲应力不超过.表给出了汽车驱动桥齿轮的许用应力数值。表汽车驱动桥齿轮的许用应力计算载荷主减速器齿轮的许用弯曲应力主减速器齿轮的许用接触应力差速器齿轮的许用弯曲应力按式式计算出的最大计算转矩,中的较小者按式计算出的平均计算转矩实践表明,主减速器齿轮的疲劳寿命主要与最大持续载荷即平均计算转矩有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩和最大附着转矩并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不能作为疲劳损坏的依据。主减速器圆弧齿螺旋锥齿轮的强度计算单位齿长上的圆周力在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即式中作用在齿轮上的圆周力,按发动机最大转矩和最大附着力矩两种载荷工况进行计算,从动齿轮的齿面宽,在此取.按发动机最大转矩计算时式中发动机输出的最大转矩,在此取重卡贯通式驱动桥结构设计摘要流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势,主要是单级驱动桥还有以下几点优点单级减速驱动桥是驱动桥中结构最简单的种,制造工艺简单,成本较低,是驱动桥的基本类型,在重型汽车上占有重要地位重型汽车发动机向低速大转矩发展的趋势,使得驱动桥的传动比向小速比发展随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低。因此,重型汽车不必像过去样,采用复杂的结构提高通过性与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性提高。单级桥产品的优势为单级桥的发展拓展了广阔的前景。从产品设计的角度看,重型车产品在主减速比小于的情况下,应尽量选用单级减速驱动桥。所以此设计采用单级驱动桥再配以铸造整体式桥壳。图单后驱动桥为中国重汽引进的美国公司吨级单级减速桥的外形图。图美驰单后驱动桥第章主减速器设计.主减速器的结构形式主减速器的结构形式主要是根据其齿轮的类型,主动齿轮和从动齿轮的安置方法以及减速形式的不同而异。主减速器的齿轮类型主减速器的齿轮有弧齿锥齿轮,双曲面齿轮,圆柱齿轮和蜗轮蜗杆等形式。在此选用弧齿锥齿轮传动,其特点是主从动齿轮的轴线垂直交于点。由于轮齿端面重叠的影响,至少有两个以上的轮齿同时啮合,因此可以承受较大的负荷,加之其轮齿不是在齿的全长上同时啮合,而是逐渐有齿的端连续而平稳的地转向另端,所以工作平稳,噪声和振动小。而弧齿锥齿轮还存在些缺点,比如对啮合精度比较敏感,齿轮副的锥顶稍有不吻合就会使工作条件急剧变坏,并加剧齿轮的磨损和使噪声增大但是当主传动比定时,主动齿轮尺寸相同时,双曲面齿轮比相应的弧齿锥齿轮小,从而可以得到更大的离地间隙,有利于实现汽车的总体布置。另外,弧齿锥齿轮与双曲面锥齿轮相比,具有较高的传动效率,可达。主减速器的减速形式由于.,般采用单级主减速器,单级减速驱动桥产品的优势单级减速驱动车桥是驱动桥中结构最简单的种,制造工艺较简单,成本较低,是驱动桥的基本型,在重型汽车上占有重要地位目前重型汽车发动机向低速大扭矩发展的趋势使得驱动桥的传动比向小速比发展随着公路状况的改善,特别是高速公路的迅猛发展,许多重型汽车使用条件对汽车通过性的要求降低,因此,重型汽车产品不必像过去样,采用复杂的结构提高其的通过性与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加。主减速器主,从动锥齿轮的支承形式作为个吨级的驱动桥,传动的转矩较大,所以主动锥齿轮采用骑马式支承。装于轮齿大端侧轴颈上的轴承,多采用两个可以预紧以增加支承刚度的圆锥滚子轴承,其中位于驱动桥前部的通常称为主动锥齿轮前轴承,其后部紧靠齿轮背面的那个齿轮称为主动锥齿轮后轴承当采用骑马式支承时,装于齿轮小端侧轴颈上的轴承般称为导向轴承。导向轴承都采用圆柱滚子式,并且内外圈可以分离有时不带内圈,以利于拆装。.主减速器的基本参数选择与设计计算主减速器计算载荷的确定.按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩式中发动机至所计算的主减速器从动锥齿轮之间的传动系的最低挡传动比。发动机的输出的最大转矩,传动系上传动部分的传动效率,在此取.该汽车的驱动桥数目在此取由于猛结合离合器而产生冲击载荷时的超载系数,对于般的载货汽车,矿用汽车和越野汽车以及液力传动及自动变速器的各类汽车取.,当性能系数时可取.式中汽车满载时的总质量在此取