帮帮文库

返回

(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书) (毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)

格式:RAR 上传:2025-12-03 17:52:57
重型载货汽车驱动桥设计摘要.,将各参数代入式.,有主动从动当按,中较小的个计算时,汽车主减速器齿轮的许用弯曲应力为按计算时,许用弯曲应力为.,轮齿弯曲强度满足要求。图.齿轮轮齿弯曲系数轮齿接触强度锥齿轮轮齿的齿面接触应力为.式中锥齿轮轮齿的齿面接触应力,主动锥齿轮大端分度圆直径,主从动锥齿轮齿面宽较小值齿面品质系数,取.综合弹性系数,对于钢制齿轮副取.见式.下说明齿面接触强度的综合系数,取.主动锥齿轮计算转矩,可按,见式两者中之较小者和见式.计算当按,见式两者中之较小者计算时,.•,将各参数代入式.,有.当按见式.计算时,.•,将各参数代入式.,有.主从动齿轮的接触应力式相同的。当按计算时,许用接触应力为当按,两者中之较小者计算时,许用接触应力为。轮齿接触应力满足要求实践表明,主减速器齿轮的疲劳寿命主要与最大持续载荷即平均计算转矩有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩和最大附着转矩并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不能作为疲劳损坏的依据。.主减速器轴承的载荷计算锥齿轮齿面上的作用力锥齿轮在工作过程中,相互啮合的齿面上作用有法向力。该法向力可分解为沿齿轮切向方向的圆周力沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。为计算作用在齿轮的圆周力,首先需要确定计算转矩。汽车在行驶过程中,由于变速器挡位的改变,且发动机也不全处于最大转矩状态,故主减速器齿轮的工作转矩处于经常变化中。实践表明,轴承的主要损坏形式为疲劳损伤,所以应按输入的当量转矩进行计算。.式中发动机最大转矩,.,变速器Ⅰ,Ⅱ,Ⅲ,倒档使用率,按表.取.变速器Ⅰ,Ⅱ,Ⅲ倒档传动比,其中,.,.,.,.,.。,变速器处于Ⅰ,Ⅱ,Ⅲ,倒档时的发动机转矩利用率,可按表.选取。表.变速器各挡的相对工作时间或使用率车型档位数最高档传动比变速器档位ⅠⅡⅢⅣⅤⅥⅦⅧ载货汽车表.变速器处于各当事的发动机转矩利用率车型变速器档位轿车公共汽车载货汽车Ⅲ档Ⅳ档Ⅳ档Ⅳ档带超速档Ⅳ档Ⅳ档带超速档Ⅴ档ⅠⅡⅢⅣⅤ超速档将以上数据代入式.,则有解得对于圆锥齿轮的齿面中点的分度圆直径式中从动齿轮节圆直径,取从动齿轮齿面宽,取从动齿轮节锥角,取.主从动齿轮齿数.将以上结果代入式解得齿宽中点处的圆周力齿宽中点处的圆周力为.式中作用在该齿轮上的转矩,作用在主减速器主动锥齿轮上的当量转矩.•主动齿轮齿面宽中点处的分度圆直径。按上式主减速器从动锥齿轮齿宽中点处的圆周力.由可知,对于弧齿锥齿轮副,作用主从动齿轮的圆周力是相等的。锥齿轮的轴向力和径向力如图.,主动锥齿轮螺旋方向为左旋,从锥顶看旋转方向为逆时针,为作用在节锥面上的齿面宽中点处的法向力,在点处的螺旋方向的法平面内,分解成两个相互垂直的力和,垂直于且位于所在的平面,位于以图.主动锥齿轮齿面的受力图为切线的节锥切平面内。在此平面内又可分为沿切线方向的圆周力和沿节圆母线方向的力。与之间的夹角为螺旋角,与之间的夹角为法向压力角,这样就有.于是,作用在主动锥齿轮齿面上的轴向力和径向力分别为由式.可计算.由式.可计算.锥齿轮轴承载荷的计算轴承的轴向载荷就是上述的齿轮的轴向力。但如果采用圆锥滚子轴承作支承时,还应考虑径向力所应起的派生轴向力的影响。而轴承的径向载荷则是上述齿轮的径向力,圆周力及轴向力这三者所引起的轴承径向支承反力的向量和。当主减速器的齿轮尺寸,支承形式和轴承位置已确定,则可计算出轴承的径向载荷。对于采用悬置式的主动锥齿轮和骑马式从动锥齿轮的轴承径向载荷,如图.及图.所示图.骑马式主动锥齿轮图.骑马式从动锥齿轮主动锥齿轮.,从动锥齿轮,。轴承,的径向载荷分别为式中见式.式.及式,.主动齿轮齿面宽中点处的分度圆直径,.。.轴承的轴向力.轴承的轴向力轴承的径向载荷分别为式中见式.式.及式.,对于轴交角为圆锥齿轮传动副来说,重型载货汽车驱动桥设计摘要合过程是由点到线,因此,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。双曲面齿轮如图.所示主从动齿轮轴线不相交而呈空间交叉。和螺旋锥齿轮相比,双曲面齿轮的优点有尺寸相同时,双曲面齿轮有更大的传动比。传动比定时,如果主动齿轮尺寸相同,双曲面齿轮比螺旋锥齿轮有较大轴径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。图.螺旋锥齿轮图.双曲面齿轮当传动比定,主动齿轮尺寸相同时,双曲面从动齿轮的直径较小,有较大的离地间隙。工作过程中,双曲面齿轮副既存在沿齿高方向的侧向滑动,又有沿齿长方向的纵向滑动,这可以改善齿轮的磨合过程,使其具有更高的运转平稳性。双曲面齿轮传动有如下缺点长方向的纵向滑动使摩擦损失增加,降低了传动效率。齿面间有大的压力和摩擦功,使齿轮抗啮合能力降低。双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。双曲面齿轮必须采用可改善油膜强度和防刮伤添加剂的特种润滑油。主减速器主动锥齿轮的支承形式及安装方式的选择,现在汽车主减速器主动锥齿轮的支承形式有如下两种悬臂式悬臂式支承结构如图.所示,其特点是在锥齿轮大端侧采用较长的轴径,其上安装两个圆锥滚子轴承。为了减小悬臂长度和增加两端的距离,以改善支承刚度,应使两轴承圆锥滚子向外。悬臂式支承结构简单,支承刚度较差,多用于传递转钜较小的轿车轻型货车的单级主减速器及许多双级主减速器中。图.锥齿轮悬臂式支承骑马式骑马式支承结构如图.所示,其特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,在需要传递较大转矩情况下,最好采用骑马式支承。图.主动锥齿轮骑马式支承从动锥齿轮的支承方式和安装方式的选择,从动锥齿轮的两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向朝外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上。主减速器的轴承预紧及齿轮啮合调整,支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的。预紧力虽然可以增大支承刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的。主动锥齿轮轴承预紧度的调整采用套筒与垫片,从动锥齿轮轴承预紧度的调整采用调整螺母。主减速器的减速形式的选择,主减速器的减速形式分为单级减速如图.双级减速单级贯通双级贯通主减速及轮边减速等。按主减速比的变化可分为单速主减速器和双速主减速器两种。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性经济性等整车性能所要求的主减速比的大小及驱动桥下的离地间隙驱动桥的数目及布置形式等。通常单极减速器用于主减速比.的各种中小型汽车上。差速器根据汽车行驶运动学的要求和实际的车轮道路以及它们之间的相互联系表明汽车在行驶过程中左右车轮在同时间内所滚过的行程往往是有差别的。例如,拐弯时外侧车轮行驶总要比内侧长。即使汽车作直线行驶,也会由于左右车轮在同时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压轮胎负荷胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求车轮行程不等。在左右车轮行程不等的情况下,如果采用根整体的驱动车轮轴将动力传给左右车轮,则会由于左右车轮的转速虽然相等而行程却又不同的这运动学上的矛盾,引起驱动车轮产生滑转或滑移。这不仅会是轮胎过早磨无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑能力而使稳定性变坏。为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都有差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单工作平稳制造方便用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左右驱动车轮间的所谓轮间差速器使用对于经常行驶在泥泞松软土路或无路地区的越野汽车来说,为了防止因侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的。半轴驱动车轮的传动装置置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中,驱动车轮的传动装置包括半轴和万向接传动装置且多采用等速万向节。在般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半铀齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。半浮式半轴具有结构简单质量小尺寸紧凑造价低廉等优点。主要用于质量较小,使用条件好,承载负荷也不大的轿车和轻型载货汽车。浮式半轴,因其侧向力引起弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命,故未得到推广。全浮式半轴广泛应用于各类重型汽车上。桥壳驱动桥桥壳是汽车上的主要零件之,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮。作用在驱动车轮上的牵引力制动力侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此桥完既是承载件又是传力件,同时它又是主减速器差速器及驱动车轮传动装置如半轴的外壳。在汽车行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量。桥壳还应结构简单制造方便以利于降低成本。其结构还应保证主减速器的拆装调整维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型使用要求制造条件材料供应等。结构形式分类可分式整体式组合式。按制造工艺不同分类铸造式强度刚度较大,但质量大,加工面多,制造工艺复杂,用于中重型货车。钢板焊接冲压式质量小,材料利用率高,制造成本低,适于大量生产,轿车和中小型货车,部分重型货车。.设计要求表.设计基础数据车型载货汽车整备质量满载质量最高车速最大爬坡度大于变速器挡传动比.额定功率最高车速时
下一篇
(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图01(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图02(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图03(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图04(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图05(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图06(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图07(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图08(毕业设计图纸全套)重型载货汽车驱动桥设计(含说明书)CAD截图09
本资源为压缩包,下载后将获得以下全套资料(图纸+论文+其他)

半轴A1.dwg 半轴A1.dwg (CAD图纸)

半轴齿轮A2.dwg 半轴齿轮A2.dwg (CAD图纸)

差速器左壳A2.dwg 差速器左壳A2.dwg (CAD图纸)

从动齿轮A1.dwg 从动齿轮A1.dwg (CAD图纸)

过程管理材料.doc 过程管理材料.doc

桥壳A1.dwg 桥壳A1.dwg (CAD图纸)

驱动桥A0.dwg 驱动桥A0.dwg (CAD图纸)

十字轴A2.dwg 十字轴A2.dwg (CAD图纸)

外文翻译--驱动桥的构造.doc 外文翻译--驱动桥的构造.doc

行星齿轮A2.dwg 行星齿轮A2.dwg (CAD图纸)

重型载货汽车驱动桥设计说明书.doc 重型载货汽车驱动桥设计说明书.doc

主动锥齿轮A2.dwg 主动锥齿轮A2.dwg (CAD图纸)

仅支持预览图纸,请谨慎下载!
  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为RAR文档,建议你点击RAR查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档