帮帮文库

返回

(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸) (全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)

格式:RAR 上传:2025-08-28 12:18:07
下这些因素是可以独立计算。正如图所示,在和标准下,备份比率大于时,轮缘厚度因素被视为常数为备份比率小于时,它随着备份比率增加而减小,几乎呈线性递减。图在标准编码下齿缘厚度和备份比率关系另外,根据公式和公式可以计算出和,其中影响参数是与根圆角半径有关几何参数。具体如图所示。图标准规范下齿根形状集合参数行星齿轮系统有限元分析为了精确研究在太阳齿轮设计中轮缘厚度和齿根半径形状影响,采用包含齿轮接触滚动轴承运营商销售商和轴系集成有限元素分析方法。由于两个齿轮表面通常存在个接触点,所以当进行齿轮分析时,传统有限元分析就会出现问题。而本次研究,使用了三维多体接触和标准下,备份比率大于时,轮缘厚度因素被视为常数为备份比率小于时,它随着备份比率增加而减小,几乎呈线性递减。图在标准编码下齿缘厚度和备份比率关系另外,根据公式和公式可以计算出和,其中影响参数是与根圆角半径有关几何参数。具体如图所示。图标准规范下齿根形状集合参数行星齿轮系统有限元分析为了精确研究在太阳齿轮设计中轮缘厚度和齿根半径形状影响,采用包含齿轮接触滚动轴承运营商销售商和轴系集成有限元素分析方法。由于两个齿轮表面通常存在个接触点,所以当进行齿轮分析时,传统有限元分析就会出现问题。而本次研究,使用了三维多体接触分析程序齿轮系统详细有限元分析方法。具体分析模型如下图所示,它是个独特刚度模型,使用有效联系解决算法,并且结合了有限元素和接触理论。图行走装置中功率分流式行星齿轮装置有限元模型图是固定在电机房里因此,第二个行星环只绕自己轴旋转。静态分析是在个啮合周期第二个太阳齿轮,和所有应力水平不同情况下比较在同时间压力最大通常,个齿接触点是最高应力接触点。由此得出,最大主应力是在每个实例计算搜索附近齿根圆角区域依靠标准规范比较计算结果。图行星齿轮组装和拆分图示结果与讨论最大应力分布在不同啮合周期。因此,在个啮合周期中,有限元分析定义空心太阳齿轮弯曲应力是最大主应力。由此猜想,弯曲应力可能发生在齿根角处。下图给出了份快照最高最大主应力。其中,标准最大弯曲应力等于最大弯曲应力除以最大应力,且备份比率为和圆角半径为模块。其它些研究如也尝试过用有限元分析计算弯曲应力,但也仅仅只有两个或者三个轮齿创建模型。而在本次研究中,所有机械部件结构影响和真正接触条件也被加以考虑。图作用在空心太阳齿轮上最大应力轮缘厚度影响为了和备份比率影响比较,在备份比率为条件下所有最大弯曲应力计算都遵循标准化应力计算,具体见下图。由图可以得出,在备份比率大于时,标准化最大弯曲应力在标准算法和分析法下几乎是样。然而在备份比率小于时,两种结果却截然不同。另外,图中并未给出备份比率低于范围内对比结果,是因为在备份比率低于时,会由于轮缘厚度容易发生裂纹而出现灾难性失败。因此,当前标准制定是比较保守,尽管裂纹不是由弯曲应力直接引起,但总来说,备份比率是越低民族大学取得航空航天工程硕士学位。女士是韩国现代重工首席研究员。她研究爱好包括机械设计和直线往复振动。呈线性增长。在这项研究中,太阳齿轮上弯曲应力备份比率可以为履带式挖掘机进行直接结构分析。根圆角半径同样影响弯曲应力。因此,可以在各种备份比率和根圆角半径下计算弯曲应力,同时可以和标准规范下计算结果做比较。弯曲应力计算标准规范下弯曲应力最常见齿轮设计和分析方法是基于包含了齿轮轮齿弯曲应力计算公式国际齿轮标准,如美国齿轮制造商协会和国际标准化组织。例如,对于,弯曲应力和名义弯曲应力是由以下公式和公式计算。其中,边缘厚度因素影响备份比率,形式因素和压力校正因素影响齿顶圆角半径系数标准规范下这些因素是可以独立计算。正如图所示,在和标准下,备份比率大于时,轮缘厚度因素被视为常数为备份比率小于时,它随着备份比率增加而减小,几乎呈线性递减。中文字二三届毕业论文外文翻译学院工程机械学院专业机械设计制造及其自动化姓名学号指导教师完成时间年月日机械科学与技术杂志研究行星齿轮系中空心太阳齿轮弯曲应力机械设计研究部门,韩国现代重工集团有限公司,韩国蔚山原稿于年月日接收于年月日修订于年三月日发表摘要般来说,行走式行星齿轮减速齿轮是由多重行星齿轮阶段组成,并且在齿轮减速器末级有空心太阳齿轮。在设计减速器齿轮中,准确估计太阳齿轮牙齿根处弯曲应力非常重要,因为太阳齿轮是减速器系统中薄弱环节。虽然使用标准齿轮代码可以轻易计算弯曲应力,比如美国设备制造商协会和国际标准化组织系列几乎所有齿轮,但是精确计算需要空心太阳齿轮有低备份比率轮缘厚度除以轮齿高度和相对大根圆角半径。在这项研究中,应用个有限元分析研究轮缘厚度和根圆角半径对空心太阳齿轮齿根弯曲应力影响。在标准规范下,牙齿根处弯曲应力线性计算常数坡备份比低于。然而,在行星齿轮系统中,轮缘处弯曲应力影响则更为复杂。同时比较了在各种备份比和根圆角半径下应用计算弯曲应力和应用标准规定计算弯曲应力。关键字备份比率弯曲应力齿根圆角半径空心太阳齿轮齿缘厚度引导语由于在密实度同轴设计和高性能方面优点,行星齿轮传动系统在机械行业普遍使用,特别是在汽车和航空航天应用上。履带式挖掘机配备是个由多个行星齿轮阶段组成行星齿轮减速器。行星齿轮传动系统最后,行星齿轮减速器有个空心太阳齿轮,由于其本身低备份比率齿缘除以齿高及较大齿弯曲应力,这通常是系统中最弱组件。弯曲应力随着备份比率减少几乎呈线性增长。在这项研究中,太阳齿轮上弯曲应力备份比率可以为履带式挖掘机进行直接结构分析。根圆角半径同样影响弯曲应力。因此,可以在各种备份比率和根圆角半径下计算弯曲应力,同时可以和标准规范下计算结果做比较。弯曲应力计算标准规范下弯曲应力最常见齿轮设计和分析方法是基于包含了齿轮轮齿弯曲应力计算公式国际齿轮标准,如美国齿轮制造商协会和国际标准化组织。例如,对于,弯曲应力和名义弯曲应力是由以下公式和公式计算。其中,边缘厚度因素影响备份比率,形式因素和压力校正因素影响齿顶圆角半径系数标准规范越好为了提高机床效率和从布局到加工加工程序完全自动化。这篇文章还将给出冲压激光组合机床最优工艺设计。冲压激光组合机床工艺设计问题对于冲压激光组合机床工艺设计,每批工件都有两个重要决定性方面,例如执行什么功能,是冲压还是切割执行什么样最优操作可以确保整体最大机械效率让我们以图所示工件为例,块金属板,两种类型组成部分被展示出来了。第个组成部分是带有中心孔和四个小孔以及倒圆角方形,第二个组成部分是顶部带有小孔半圆形与长方形组合图形。对于组合机床,有四种不同操作特征。例如,个小孔,个大孔,四个第部分部件以及七个第二部分部件。而对于自动规划设计,什么特征是用来冲压还有什么是用来切割如果第个问题得到解决,那将要用什么最好操作来得到最大机械效率本文讲是在第个问题启发下得到个定量方法,那就是蚁群优化,它将是第二个问题答案。再用它来测试如图所示或者更为复杂金属薄板工件。整合了计算机辅助设备和代码子程序方法也将被讨论。在讨论之前提到方法时,有些需要我们考虑注意点操作序列进程将得到优化,以提高冲压激光组合机床机械效率。可能提高效率将转化为机器成本,劳动力成本降低以及生产力提高等等。图冲压激光组合机床工件组成部分单位事实上很多组合机床只有个冲压头或者个激光切割器。本文所要研究是,如果要用这个方法将机床扩展成多刀头话,应该不是太难。冲压激光组合机床应该设计成数控型,以便最优操作程序能够被输出而生成代码。附件外文原文复印件,毕业设计论文外文资料翻译系部机械工程系专业机械工程及自动化姓名学号外文出处附件外文资料翻译译文外文原文。指导教师评语译文基本能表达原文思想,语句基本通顺,条理基本清楚,专业用语翻译得基本准确,基本上符合中文语法,整体翻译质量较好。签名年月日注请将该封面与附件装订成册。。在讨论之前提到方法时,有些需要我们考虑注意点操作序列进程将得到优化,以提高冲压激光组合机床机械效率。可能提高效率将转化为机器成本,劳动力成本降低以及生产力提高等等。图冲压激光组合机床工件组成部分单位事实上很多组合机床只有个冲压头或者个激光切割器。本文所要研究是,如果要用这个方法将机床扩展成多刀头话,应该不是太难。冲压激光组合机床应该设计成数控型,以便最优操作程序能够被输出而生成代码。附件外文原文复印件毕业设计论文外文资料翻译系部机械工程系专业机械工程及自动化姓名学号外文出处附件外文资料翻译译文外文原文。指导教师评语译文基本能表达原文思想,语句基本通顺,条理基本清楚,专业用语翻译得基本准确,基本上符合中文语法,整体翻译质量较好。签名年月日注请将该封面与附件装订成册。附件外文资料翻译译文蚁群优化冲压激光组合机床最佳工艺设计方法摘要部既能进行冲压又能进行激光切割操作机器就是所谓冲压激光组合机床。这种类型机床在市场上已经有二十年了。尽管工序设计软件已经用于这类组合机床设计,但是从我们搜索结果来看,这类组合机床最优工序设计还没有被直接研究出来。本文提到冲压激光组合机床问题可通过整合知识,定量分析和数字下这些因素是可以独立计算。正如图所示,在和标准下,备份比率大于时,轮缘厚度因素被视为常数为备份比率小于时,它随着备份比率增加而减小,几乎呈线性递减。图在标准编码下齿缘厚度和备份比率关系另外,根据公式和公式可以计算出和,其中影响参数是与根圆角半径有关几何参数。具体如图所示。图标准规范下齿根形状集合参数行星齿轮系统有限元分析为了精确研究在太阳齿轮设计中轮缘厚度和齿根半径形状影响,采用包含齿轮接触滚动轴承运营商销售商和轴系集成有限元素分析方法。由于两个齿轮表面通常存在个接触点,所以当进行齿轮分析时,传统有限元分析就会出现问题。而本次研究,使用了三维多体接触和标准下,备份比率大于时,轮缘厚度因素被视为常数为备份比率小于时,它随着备份比率增加而减小,几乎呈线性递减。图在标准编码下齿缘厚度和备份比率关系另外,根据公式和公式可以计算出和,其中影响参数是与根圆角半径有关几何参数。具体如图所示。图标准规范下齿根形状集合参数行星齿轮系统有限元分析为了精确研究在太阳齿轮设计中轮缘厚度和齿根半径形状影响,采用包含齿轮接触滚动轴承运营商销售商和轴系集成有限元素分析方法。由于两个齿轮表面通常存在个接触点,所以当进行齿轮分析时,传统有限元分析就会出现问题。而本次研究,使用了三维多体接触分析程序齿轮系统详细有限元分析方法。具体分析模型如下图所示,它是个独特刚度模型,使用有效联系解决算法,并且结合了有限元素和接触理论。图行走装置中功率分流式行星齿轮装置有限元模型图是固定在电机房里因此,第二个行星环只绕自己轴旋转。静态分析是在个啮合周期第二个太阳齿轮,和所有应力水平不同情况下比较在同时间压力最大通常,个齿接触点是最高应力接触点。由此得出,最大主应力是在每个实例计算搜索附近齿根圆角区域依靠标准规范比较计算结果。图行星齿轮组装和拆分图示结果与讨论最大应力分布在不同啮合周期。因此,在个啮合周期中,有限元分析定义空心太阳齿轮弯曲应力是最大主应力。由此猜想,弯曲应力可能发生在齿根角处。下图给出了份快照最高最大主应力。其中,标准最大弯曲应力等于最大弯曲应力除以最大应力,且备份比率为和圆角半径为模块。其它些研究如也尝试过用有限元分析计算弯曲应力,但也仅仅只有两个或者三个轮齿创建模型。而在本次研究中,所有机械部件结构影响和真正接触条件也被加以考虑。图作用在空心太阳齿轮上最大应力轮缘厚度影响为了和备份比率影响比较,在备份比率为条件下所有最大弯曲应力计算都遵循标准化应力计算,具体见下图。由图可以得出,在备份比率大于时,标准化最大弯曲应力在标准算法和分析法下几乎是样。然而在备份比率小于时,两种结果却截然不同。另外,图中并未给出备份比率低于范围内对比结果,是因为在备份比率低于时,会由于轮缘厚度容易发生裂纹而出现灾难性失败。因此,当前标准制定是比较保守,尽管裂纹不是由弯曲应力直接引起,但总来说,备份比率是越低
下一篇
(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)CAD截图01(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)CAD截图02(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)CAD截图03(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)CAD截图04(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)CAD截图05(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)CAD截图06(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)CAD截图07(全套设计)承压容器壳体的结构设计和工艺分析(CAD图纸)CAD截图08
本资源为压缩包,下载后将获得以下全套资料(图纸+论文+其他)

补强管.dwg 补强管.dwg (CAD图纸)

测温口.dwg 测温口.dwg (CAD图纸)

承压容器壳体的结构设计和工艺分析开题报告.doc 承压容器壳体的结构设计和工艺分析开题报告.doc

承压容器壳体的结构设计和工艺分析论文.doc 承压容器壳体的结构设计和工艺分析论文.doc

承压容器壳体装配图.dwg 承压容器壳体装配图.dwg (CAD图纸)

定位销.dwg 定位销.dwg (CAD图纸)

端盖.dwg 端盖.dwg (CAD图纸)

法兰.dwg 法兰.dwg (CAD图纸)

卡箍.dwg 卡箍.dwg (CAD图纸)

前期资料.doc 前期资料.doc

任务书.doc 任务书.doc

下端盖.dwg 下端盖.dwg (CAD图纸)

仅支持预览图纸,请谨慎下载!
  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为RAR文档,建议你点击RAR查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档