后曲率,根据和建议,般取。滞回规律详细说明可以从其他地方找到。弯矩和曲率定义来自钢筋混凝土构件标准理论。对于墙构件,边界加固和竖向分布都被考虑到用来解释−ϕ曲线。另外,轴向荷载来自于墙重力,假定在地震作用中是个常量,在主曲线中和点弯矩和曲率计算中,应该考虑到。这就是由连梁连接剪力墙近似计算。由于连梁产生主要地震作用剪切力,这就降低了墙体轴向可变地震作用。但是,轴向荷载减小导致了连接构件弯曲强度降低结果。破坏点弯矩估计值是根据ϕ定义,假设和点有相同压力在混凝土中。这很明显是个近似值因为它总是产生在ϕϕ处在图中。这个假设已经被证实,通过些混凝土墙体拉压曲线。在所有情况中,可以通过更加精确地方法获得ϕ较大值。然而,当这种模型在这篇研究中被用来预测实际建筑非弹性地震反应时,最大曲率从未超过ϕ值。剪切破坏模型剪力支配作用正如图中滞回模型描述那样。收缩作用和强度减小由于在同变形程度重复循环现在在滞回模型被实施了。剪切破坏模型假设了墙体抗剪强度在弯曲和轴向是独立。这也是个近似假定,但是忽略剪力和轴力相互影响和现行墙体设计依据是致。该模型最初是为剪跨比为或者更小矮墙而开发,其中,是剪力墙底部弯矩,是剪力值,是墙体长度。对于截面宽度更窄剪力墙,这个比值般要大于,如下文所示。在图中,点表示包络线中荷载位移关系中斜率变化点是可以从实验中观察到。试件新刚度值大约是最初刚度。在试验中出现点,般非常接近墙体对角处第条裂缝发生点。点相当于试验过程中剪力值最大点,而点可能和边界条件有关,在这种边界条件限制下,构件可能仍被当做结构抵御机制中部分。点点和点在图所示包络线中定义基于从个全尺寸剪力墙试件循环试验中所得试验结果。所有这些试件都被设计用来反应剪切失效模型而且它们剪跨比都在到之间。每次试验加载顺序包括在给定位移幅值两个周期设置,这被逐步增加而且与试件剪跨比变化次序相致。当试件侧向强度降至大约为最大强度时,试验就应该完成了。这个试验过程更多细节可以从其他地方找到。另方面,高墙模型特点可以从些钢筋混凝土梁试验结果中获得梁和矮墙剪切行为主要差异是在点以后梁强度已经丧失图,这已经被实现了。从矮墙试验中获得直线斜率说明了随着位移增大,剪切强度降低。这个事实导致了个问题,该然间不能处理刚性结构,因此,负半正定切线刚度矩阵发生在些点在回应中。基于这个原因,模型中直线被认为是近似不变。但是,实际极限位移依旧从试验中获得。旦这个最大位移从段墙试验历史分析中被最终确定,那么该构件就从结构中分离,并且刚度矩阵要被重新评估。图展示了这个模型条滞回曲线,这也遵从滞回模型。在剪切破坏模型中,点,附近裂缝清晰地说明了在条剪切裂缝产生后,收缩作用会经常出现在恢复力特性中。为了理解试件中在相同变形条件下观察到抗剪强度减小导致重复周期,采用作为强度降低因子,如图中点所示。在从图中点开始卸载之后,随后加载循环特征点在点正下方。该模型对于长肢墙和矮墙是相似。唯区别是点和点图变成了同个点在梁测试中,当出现剪切破坏时候。图说明这样,弯曲破坏或剪切破坏可以发生在每片墙体中,在地震过程中强烈地面运动中。程序预测实效模型是基于弯曲效应在墙体单元中有弯曲滞后事实曲线,如图所示,同样,剪切效应来自于剪力墙剪切滞后曲线曲线,如图所示。因此,在每步拟合中,曲率ϕ和剪切位移都和和曲率值有关,后者可以从滞回曲线中直接得到,这使得弯曲失效或剪切失效发展成为可能。由于剪切模型参数取决于剪跨比,剪跨比般认为近似等于,也就是墙体总高度除以截面长度。模型分析目前是按照二维进行,但是三维分析理论已经在最近被提出。该模型通过对年震响应。鸣谢本研究是智利高科技开发局作为科技项目而资助建立。在此鸣谢该机构赞助。同时,作者于此并感谢教授提出宝贵意见以及初稿撰写感谢来自大学教授提供在地震中损坏实际建筑设计资料和破坏资料。参考文献,˜,˜找到。弯矩和曲率定义来自钢筋混凝土构件标准理论。对于墙构件,边界加固和竖向分布都被考虑到用来解释−ϕ曲线。另外,轴向荷载来自于墙重力,假定在地震作用中是个常量,在主曲线中和点弯矩和曲率计算中,应该考虑到。这就是由连梁连接剪力墙近似计算。由于连梁产生主要地震作用剪切力,这就降低了墙体轴向可变地震作用。但是,轴向荷载减小导致了连接构件弯曲强度降低结果。破坏点弯矩估计值是根据ϕ定义,假设和点有相同压力在混凝土中。这很明显是个近似值因为它总是产生在ϕϕ处在图中。这个假设已经被证实,通过些混凝土墙体拉压曲线。在所有情况中,可以通过更加精确地方法获得ϕ较大值。然而,当这种模型在这篇研究中被用来预测实际建筑非弹性地震反应时,最大曲率从未超过ϕ值。剪切破坏模型剪力支配作用正如图中滞回模型描述那样。收缩作用和强度减小由于在同变形程度重复循环现在个预测钢筋混凝土剪力墙非弹性地震响应分析模型摘要开发钢筋混凝土剪力墙建筑非弹性地震响应分析模型,包括提出弯曲失效和剪切失效模型。由于剪力墙在以往发生地震中具有良好弹性反应而被很多处于地震带国家广泛地应用于建筑中。这篇研究目,就是开发种可以预测剪力墙结构建筑抗震性能计算机模型。这种模型将使我们获得对建筑物在严重地壳运动中基本侧向强度和非弹性形变更好评估。这个信息可以用于性能化设计程序执行,并且能够提高程序代码优化。为了实现这个目标,基于实验结果剪切破坏形式模型已经被添加到计算机程序中。本文讨论了最相关问题,并制定了开发这种模型解决方案。验证该模型被推荐用于预测剪力墙在非弹性地震反应中结果与年月日智利地震中建筑物两个实际反应结果相比较。尽管该模型是二维,因此它忽略了扭转反应后取得成果是令人满意。年相关学院版权所有关键词剪力墙建筑钢筋混凝土建筑物非弹性反应,剪切破坏模式引言设计合理多层钢筋混凝土剪力墙建筑在剧烈地震从主曲线。在达到开裂弯矩值之前,卸载规律是在另方向上连接卸载点和开裂点条直线图中直。如果屈服弯矩极大,而且卸载点发生在点处,那么卸载曲线曲率就被定义为ϕϕ其中,ϕ是加载过程中最大曲率,是加载过程中屈服点和开裂点在相反方向连线斜率,指数控制着卸载曲线在屈服点了长常大。总之,市明市波动引起各种宏观经济手段,如国民总产出和失业。这些研究明确界定金融和实体经济总体水平之间联系,本科毕业论文设计外文翻译资料但我们对金融结构实际效果在分解水平之间联系理解是有限。等人分析了个上市及非上市小企业样品并且发现盈利能力资产结构规模总资产年龄和进入资本市场与家小公司财务结构是有关。它们表明,只有当企业正在经历个快速增长并且外部资本市场缺乏时,金融结构与该企业发展是密切相关。概念框架和数据概念框架为了使企业发展与筹资相联系,让我们假设在任何给定周期,公司我收到个生产力冲击并且与时间呈正相关ε,其中,和ε,ε。规定该公司发展与投资增长成正比。在没有任何外部筹资来源,所有新投资从每个时期该公司利润产生。所有进步投资后剩余利润分配给企业股东以便对公司盈利保留,这样就不会在时本科毕业论文设计外文翻译资料外文出处,译文标题筹资渠道和企业发展译文内容提要为什么些公司比其他公司发展得快尽管各种发现和未发现的因素已经被认为是企业发展的潜在驱动力,但是经济学家仍然不承认金融结构在公司发展中的作用。在这篇文章中,我用个上市和非上市的公司样本去说明金融结构对公司发展的作用在统计学上和数量学的重要性。表明,通过降低外部筹资成本,金融发展将促进经济增长,在更发达金融市场,依赖外部筹资企业不成比例增长更快。此后,有许多文献认为金融没有真正影响经济增长实际效果。和研究了在法律和财务系统中影响企业外部融资而达到资金增长上有何差异。他们认为法律体系效率指数得分高国家,是个更大比例公司使用长期外部融资和个活跃,尽管不定很大,股票市场和个大型银行业对外同样有关联财政支持企业成长,在个单独说明里,黄和也表明,总股市波动引起各种宏观经济手段,如国民总产出和失业。这些研究明确界定金融和实体经济总体水平之间联系,本科毕业论文设计外文翻译资料但我们对金融结构实际效果在分解水平之间联系理解是有限。等人分析了个上市及非上市小企业样品并且发现盈利能力资产结构规模总资产年龄和进入资本市场与家小公司财务结构是有关。它们表明,只有当企业正在经历个快速增长并且外部资本市场缺乏时,金融结构与该企业发展是密切相关。概念框架和数据概念框架为了使企业发展与筹资相联系,让我们假设在任何给定周期,公司我收到个生产力冲击并且与时间呈正相关ε,其中,和ε,ε。规定该公司发展与投资增长成正比。在没有任何外部筹资来源,所有新投资从每个时期该公司利润产生。所有进步投资后剩余利润分配给企业股东以便对公司盈利保留,这样就不会在时我假设基本生产率不同放射式从没有发现企业品质,这些品质可以被企业在回归分析中企业固定影响记录下来。杠杆作用我用三种不同指标衡量企业财务状况流动比率财务杠杆财务松弛度。控制董事会中独立董事数量用来广泛被用来代理个企业控制结构。在我数据中,我看到个企业董事数量但没有他们是否是独立董事信息。因此,我用董事对数作为个企业控制结构代表。总结统计表显示了样本期间年总结统计。表格上显示小公司平均比后曲率,根据和建议,般取。滞回规律详细说明可以从其他地方找到。弯矩和曲率定义来自钢筋混凝土构件标准理论。对于墙构件,边界加固和竖向分布都被考虑到用来解释−ϕ曲线。另外,轴向荷载来自于墙重力,假定在地震作用中是个常量,在主曲线中和点弯矩和曲率计算中,应该考虑到。这就是由连梁连接剪力墙近似计算。由于连梁产生主要地震作用剪切力,这就降低了墙体轴向可变地震作用。但是,轴向荷载减小导致了连接构件弯曲强度降低结果。破坏点弯矩估计值是根据ϕ定义,假设和点有相同压力在混凝土中。这很明显是个近似值因为它总是产生在ϕϕ处在图中。这个假设已经被证实,通过些混凝土墙体拉压曲线。在所有情况中,可以通过更加精确地方法获得ϕ较大值。然而,当这种模型在这篇研究中被用来预测实际建筑非弹性地震反应时,最大曲率从未超过ϕ值。剪切破坏模型剪力支配作用正如图中滞回模型描述那样。收缩作用和强度减小由于在同变形程度重复循环现在在滞回模型被实施了。剪切破坏模型假设了墙体抗剪强度在弯曲和轴向是独立。这也是个近似假定,但是忽略剪力和轴力相互影响和现行墙体设计依据是致。该模型最初是为剪跨比为或者更小矮墙而开发,其中,是剪力墙底部弯矩,是剪力值,是墙体长度。对于截面宽度更窄剪力墙,这个比值般要大于,如下文所示。在图中,点表示包络线中荷载位移关系中斜率变化点是可以从实验中观察到。试件新刚度值大约是最初刚度。在试验中出现点,般非常接近墙体对角处第条裂缝发生点。点相当于试验过程中剪力值最大点,而点可能和边界条件有关,在这种边界条件限制下,构件可能仍被当做结构抵御机制中部分。点点和点在图所示包络线中定义基于从个全尺寸剪力墙试件循环试验中所得试验结果。所有这些试件都被设计用来反应剪切失效模型而且它们剪跨比都在到之间。每次试验加载顺序包括在给定位移幅值两个周期设置,这被逐步增加而且与试件剪跨比变化次序相致。当试件侧向强度降至大约为最大强度时,试验就应该完成了。这个试验过程更多细节可以从其他地方找到。另方面,高墙模型特点可以从些钢筋混凝土梁试验结果中获得梁和矮墙剪切行为主要差异是在点以后梁强度已经丧失图,这已经被实现了。从矮墙试验中获得直线斜率说明了随着位移增大,剪切强度降低。这个事实导致了个问题,该然间不能处理刚性结构,因此,负半正定切线刚度矩阵发生在些点在回应中。基于这个原因,模型中直线被认为是近似不变。但是,实际极限位移依旧从试验中获得。旦这个最大位移从段墙试验历史分析中被最终确定,那么该构件就从结构中分离,并且刚度矩阵要被重新评估。图展示了这个模型条滞回曲线,这也遵从滞回模型。在剪切破坏模型中,点,附近裂缝清晰地说明了在条剪切裂缝产生后,收缩作用会经常出现在恢复力特性中。为了理解试件中在相同变形条件下观察到抗剪强度减小导致重复周期,采用作为强度降低因子,如图中点所示。在从图中点开始卸载之后,随后加载循环特征点在点正下方。该模型对于长肢墙和矮墙是相似。唯区别是点和点图变成了同个点在梁测试中,当出现剪切破坏时候。图说明