1、“.....工作面采用三班采煤,边采边准,年推进度约。全矿井移交生产时共配备个综掘工作面,个普掘工作面,采掘比为,矸石率为。五移交生产及达到设计产量时的井巷工程量由于本矿井岩层主要为砂岩,抗压强度大,围岩条件较好。因此,巷道支护型式主要采用锚喷支护,工作面上下顺槽由于均为半煤岩巷,设计采用锚杆加钢带支护,对些特殊酮室支护则采用混凝土砌碹。为节省初期投资,设计对些初期不影响首采区正常生产,但需要后期形成和完善的部分系统工程量如井底二号煤仓,卸载及翻车机联合硐室等部分井底车场工程,留待移交后建设,实行边采边建。这部分井巷工程量共有,其中除采区巷道外,其余均为井底车场及硐室工程量。矿井移交时井巷工程量见表。矿井移交时井巷工程量表表序号工程类别井巷工程量长度掘进体积井筒井底车场及硐室主要运输巷及回风巷采区合计温馨提示本文来自文库巴巴文档下载平台,文库巴巴是个专注于文档的在线分享平台......”。
2、“.....全站资料均为文档,文档下载平台,让您的工作变得更轻松,井田南北走向长,平均,东西倾斜宽,平均,面积约为,井田范围内地形平坦,自然地形标高般在。三全井田共有工业储量,可采储量。四本井田可采煤层属低中灰特低硫中低磷高发热量易选中等可选弱粘结中等粘结性低变五本井田位于绥滨集贤拗陷带的东荣向斜东翼的南段,井田内以弧形断裂构造为主,并由此而派生两组褶曲构造。六本井田煤层上覆有较厚第四系和第三系,煤层位于当地侵蚀基准面以下。井田内主带。井田内主要隔水层有第四系上部隔水层下部隔水层,第三系隔水层。第三系隔水层为泥岩和粉砂岩,泥质半胶结,但在勘探线间煤层露头处第三系缺失,形成天窗,尤其又有数条正断层通过天窗,使其水文地质条件变得复杂。七本矿井初期为低瓦斯矿井。八本井田平均位在主斜井的南侧平行主井布置,其层位位于号煤层底板约岩石中,设单钩串车,用于辅助提升......”。
3、“.....回风斜井回上净断面,于主斜井南侧平行主斜井且沿号煤层布置,其内设置架空乘人器运送人员,并作为矿井的专用回风井。七水平划分全井田划分个生产水平,其中,水平标高为,采用上下山开采二水平标高为,采用下山开采,下山开采最终标高为。八井下运输初期首采区煤炭运输通过主斜井直接运至水平车场上部煤仓。其辅助运输通过轨道石门直接与水平车场联系,采用防爆内燃机车牵引矿车故所选液压支架满足初期采区顶底板的要求。采煤机及运输机选型由于初期投产采区内可采煤层平均厚度,且有夹矸,煤层硬度系数,为节省矿井初期建设投资,本次设计借鉴铁法矿业集团的经验,采用买核的方式,引进德国产的刨煤机型号运输机型号及其自动控制系统,其余设备如液压支架等配套设备均采用国内设备。二采区巷道布置与回采方式根据本矿井煤层分组及采区划分情况,中层群共划分两组,号煤层为上层组,号煤层为下层组,两层组之间法线距离为,全井田沿走向按断层和褶曲构造划为四大块段......”。
4、“.....采用大集中布置,而南北两块段可依据煤层分组情况划为上下二组四个采区,以减少采区准备工程量,降低采区准备时间。对于初期移交的南块段,设计在矿井开拓采区划分时作为上下层组二个采区考虑,但根据本矿井初期开拓巷道布置,工业场地压去了南下采区二片盘的部分煤炭,为充分发挥中央采区系统能力,减少折返运输,增加中央采区服务年限,矿井在移交生产后也可将南下采区与南上采区合并,采用集中大联合布置方式,下层组采区通过后石门与之联络,为矿井创造边采边建的条件。上山位置选择由于南上采区平均走向长左右,根据开拓巷道布置,本采区作为中央采区,三条暗斜井均可代替采区上山使用,其位置基本处于采区中央,实现双翼开采。采区巷道布置本采区巷道布置形式采用集中上山,区段石门布置。采区内设主斜井运上副斜井轨上和回风斜井回上三条斜井,三条暗斜井除回风斜井沿号煤层布置外,其余均布置于层之下的岩层中。其中主斜井倾角......”。
5、“.....采用单钩串车提升。各暗斜井平面间距为主斜井与回风斜井间距,与副斜井间距。采区内各区段石门布置轨道零片石门确定在标高,片石门标高确定在标高,阶段垂高。由此,区段工作面长度可达左右。此后其它区段的开采,则以垂高来进行区段划分。工作面上下顺槽则通过区段石门及溜煤眼与各暗斜井筒联络。回采方式为充分发挥采煤工作面机械性能,减少采掘相互干扰,同时为在生产期间切实掌握采构筑物。据对树脂混凝土和有机无机水泥基复合古老天然植物应用及存在理论知识成功经验,反复换档各种天然植物树脂进行抢修,种新外加剂混凝土耐久性制备方式碱分辨率法和水热合成。是种水溶性树脂。它是种粘性黄色液体。其密度为,表面张力为平方厘米。它是种非引气剂与还原水水还原。通过使用抗冻融,抗渗性,化学侵蚀性,和耐用性增强特性进行了研究。实验用于实验原料列示如下水泥型来自香港,从华新洋灰公司其物理性质如下相对密度,比表面积,......”。
6、“.....水自来水。为了说明对混凝土耐久性明显影响,使用必不可少水泥水比例为。为了使盐结晶容易形成结晶内混凝土,水泥水比率应力用于化学实验。混凝土混合比示于表中。结果抗冻性按照混凝土抗冻性进行了研究。冻融循环系统是小时,摄氏度,在摄氏度小时水。实验方法混凝土试件进行了天,在饱和石灰水中固化。三他们对冻融试验放置到智能冻融循环机。其他三个被放置在空气中对比试验。冻融循环次后,在空气中同龄期混凝土晒过被用来评估混凝土抗冻性混凝土抗压强度和杨氏模量。经过次冻融循环,所述每个样品强度和杨氏模量示于表中。为了揭示对混凝土,其变化率中抗冻性和杨氏模量影响,具体用不同混合比率是基于强度和杨氏模量混凝土无经过个冻融循环计算。从表可以看出,混凝土强度损失与经过个冻融循环明显减小和混凝土杨氏模量损失与对照混凝土相比有明显提高。在强度和杨氏模量变化率中,混凝土用不同比例强度增加了,杨氏模量增加倍。总之,具体为耐冻结性有明显提高。它可以看出......”。
7、“.....当混合比达到,在天时强度降低。此外,当混合比率小,后强度明显增加。这样耐冻结性改进最佳混合比例为。混合比过高时,冻结性趋于降低。化学侵蚀性对于化学侵蚀抗性试验混凝土用,化学介质浓度应该增加。对混凝土耐化学性影响,全面损失率在强度和重量前和攻击后评估。实验钠溶液比蒸馏水缓慢。随着溶液浓度增加,温度降阻效果更为明显。在秒,溶液温度,和氯化钠溶液温度被降低到和蒸馏水温度。鉴于此,可以抵抗热传导,延长降温过程,和延迟溶液冻结时间。它是混凝土腔转移到未填充空间内具体解决方案,从而降低由于溶液腔抗冻混凝土损伤。组成及显微结构分析材料性能取决于材料结构。水泥制品,孔隙度和孔径分布主要结构特点及影响混凝土物理性能。如果减少微米毛孔数量,混凝土耐久性大大提高。为了分析混凝土耐久性混凝土机制,和孔隙结构进行了测试。结果在图和图所示可以看出。混凝土,孔,孔径在微米和微米明显减小......”。
8、“.....分析结果表明,可以改善混凝土孔隙大小分布,减少腔数量。降低反应场和攻击中对混凝土内部转移是抵抗由于对孔隙结构影响,并对混凝土耐久性也随之增加。提高耐久性理论模型混凝土耐久性改善机制,不仅是因为对孔结构和混凝土矿物组成影响,而且在混凝土中空腔溶液性质改进。因此本文解决热传导和环境介质质量导电性初步探讨和提出阻力模型。阻力模型将混凝土孔隙。两种溶液含量毛孔都充满了溶液和毛孔不全解。阻力模型如图所示。当毛孔充分溶液,降温过程和溶液冻结过程受阻,使过冷水腔有足够时间转移到未填充空间和减少由于所形成冰膨胀破坏。此外,是种高分子。当些腔未填充溶液,可以形成膜层由于高粘度。在种程度上,膜不仅可以防止水,热量和攻击转移到混凝土中离子,还降低了空间内混凝土中离子和水化产物攻击反应和空间深移情提高,从而增加转移抵抗能力和混凝土耐久性。结论表明在抗冻性研究,与混凝土抗渗性及耐化学性,即最佳比例范围从。到。在这个范围内......”。
9、“.....杨氏模量可提高。和超过盐酸侵蚀后在混凝土损失强度和重量下降。具体有抗渗在天后可通过以上降低。二虽从对混凝土耐久性提高机理分析已知,即不仅影响孔隙结构和混凝土矿物组合物,同时还可以抵抗环境介质中热量和质量传递过程,阻碍冷冻过程,停止侵蚀中从转移到混凝土,从而提高混凝土耐久性。三是从天然植物树脂它可显着提高混凝土耐久性合成。它是在西部大开发应用和混凝土耐久性提高用于恶劣环境寒冷气候和高盐地区具有重要意义。这是值得推广和应用。参考文献实验用于实验原料列示如下水泥型来自香港,从华新洋灰公司其物理性质如下相对密度,比表面积,。细骨料粉碎石灰石最大粒径压碎值相对密度。水自来水。为了说明对混凝土耐久性明显影响,使用必不可少水泥水比例为。为了使盐结晶容易形成结晶内混凝土,水泥水比率应力用于化学实验。混凝土混合比示于表中。结果抗冻性按照混凝土抗冻性进行了研究。冻融循环系统是小时,摄氏度,在摄氏度小时水......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。