帮帮文库

返回

(终稿)空气滤清器壳的正反拉深冲孔复合模设计(全套完整有CAD) (终稿)空气滤清器壳的正反拉深冲孔复合模设计(全套完整有CAD)

格式:RAR 上传:2026-01-09 15:55:48
的高度就可达到通气的目的。其次要确定拉深凸模的固定方法,以便确定其固定端的结构形式。对于顺装顺出件简单拉深模,如果工件直径与模柄直径相差不大,常将凸模与模柄制成体。如果两者直径相差较大,或者拉深模有压边装置,可将凸模固定板设计成凸缘式的,借助固定板与上模板进行连接。许多设计者喜欢采用下述方法固定拉深凸模凸模固定端不带凸缘,以过渡配合直接嵌入到模座内定深度,并用螺钉联接防止拔出。其优点是模具结构比较的简单,可省去销钉和凸模固定板。但拉深凸模与模座的垂直度比凸缘式凸模较差,因此不适用于较精密的拉深模。有利于较大的拉深凸模,从节省模具钢与便于热处理考虑,可采用组合式的结构。凸凹模即拉深时为拉深凸模冲孔时为冲孔凹模。在设计过程中综合考虑。其些设计要点在这里不在叙述,凸凹模结构图如下所示图拉深凸模冲孔凹模结构图.压力设备选择压力机吨位的大小的选择,首先要以冲压工艺所需的变形力为前提。要求设备的名义压力要大于所需的变形力,而且还要有定的力量储备,以防万。从提高设备的工作刚度冲压零件的精度及延长设备的寿命的观点出发,要求设备容量有较大的剩余。最新的观点认为,我们只需要使用设备的的容量,甚至,即取工艺变形力的倍。上述设备吨位的选择原则,对于冲裁弯曲等工序已不存在什么问题。但对于本设计所使用的拉深,可能还不保险。因为拉深与冲裁不同,最大变形力不是发生在冲床名义压力的位置,而是发生在拉深成型的中前期,这时虽然最大变形力小于压力机的名义压力,但最大变形力发生的位置远离名义压力的位置而不保险。于是就需要用到压力机的许用力行程曲线。本次设计的工艺力行程曲线图如图.所示。图图中零点为滑块的下死点,滑块在距下死点处开始冲压零件。曲线为落料力的负荷曲线,曲线为正拉深力的负荷曲线,曲线为压边力的负荷曲线,曲线为反拉深力的负荷曲线。曲线为压力机的许用力行程曲线,点处为压力机到达公称压力的位置。其余卸料力和顶料力由于力不大,可以放在压力机预留力中考虑。从图中我们可以看出冲压的最大总压力,出现在离下死点后就需达到,对于这种落料拉深复合工序,选择设备吨位尺寸时.既不能把以上几个力加起来再乘个系数值作为设备的吨位也不能仅把落料力或拉深力加起来再乘个系数作为设备吨位。而应该根据压力机说明书中所给出的允许工作负荷曲线杂,公差等级高,尺寸大或尺寸较小的零件时,可以采用镶拼式凹模,但对于此零件的冲裁其凹模结构简单,故采用整体式结构。其凸模结构图如下图所示图冲孔凸模结构形式图凸模的固定方法用过盈配合与下固定板固定,采用台肩形式放入下固定板,且同时用下模板顶住,具体的固定方法见装配图。.拉深凹模的设计计算拉深凹模的工作尺寸的计算参见前面的主要工艺参数计算。现将其它参数的计算介绍如下拉深模的凹模圆角半径拉深时,材料只有经过凹模圆角流入洞口内才能形成工件的筒壁,所以的大小对拉深工作的影响非常大。小时,材料流过它就困难,弯曲变形阻力,摩擦力,反向弯曲的校直力都大,从而使拉深力增加,工件筒壁容易刮伤,变薄严重,甚至在危险断面处拉破,同时,材料对凹模的压力增加,磨损增大,使模具的寿命降低。这样,材料变形受限制,必须采用较大的拉深系数。在生产上般应尽量避免采用过小的凹模圆角半径。太大时,拉深初期不与模具表面接触的毛坯宽度加大,由于这部分材料不受压边力作用,因而容易起皱。在拉深后期毛坯外缘也会早脱离压边作用而起皱,使拉深件质量不好,在侧壁下部和口部都形成皱折。尤其当毛坯的相对厚度小时,这个现象更严重。在不产生起皱的前提下,凹模圆角半径越大越好。可按下面公式计算的最小值。.式中毛坯直径或上道工序拉深件直径本道工序拉深后的直径材料厚度。以后各次拉深时,应逐步减小,其值可按关系式确定式中前次拉深的凹模圆角半径本次拉深的凹模圆角半径。经计算反拉深凹模圆角半径为。拉深凸模的圆角半径凸对拉深工作也有影响。当凸过小时,则角部弯曲变形大,危险断面容易拉断。当凸过大时,则毛坯底部的承压面积减小,悬空部分加大,容易产生底部的局部变薄和内皱。除最后次拉深,凸模的圆角半径凸应比凹模半径略小,即凸.凹,最后次拉深时,凸模的凸应等于零件的内圆半径,但不得小于材料厚度。如工件的内圆角半径要求小于料厚,则要有整形工序来完成。故在此设计中取凸。拉深间隙拉深间隙指拉深凸模与凹模之间的单面间隙,用表示。模具间隙对拉深过程的影响拉深模的凸模与凹模之间的单边间隙,影响拉深力与拉深件的质量。拉深模的凸凹模间隙大,则摩擦小,能减小拉深力。但如果间隙过大,拉深件的精度将不易控制,拉深后零件的高度将小于所要求的高度,零件成桶形。拉深模的凸凹模间隙小,则摩擦大,将增加拉深力,造成许用拉深系数值的增大。如果凸凹模间隙小于拉深件的材料厚度,则将产生变薄拉深的效果,使得拉深件该工件反拉深为工件第次拉伸,因此可以计算其拉深系数来确定拉深次数。其反拉深系数为查表,之间,而,所以反拉深过程可以次拉深成功。各部分工艺力计算.落料正拉深力过程落料力平刃凸模落料力的计算公式为式中冲裁力冲件的周边长度板料厚度材料的抗冲剪强度修正系数。它与冲裁间隙冲件形状冲裁速度板料厚度润滑情况等多种因素有关。其影响范围的最小值和最大值在的范围内,般取为。在实际应用中,抗冲剪强度的值般取材料抗拉强度的。为便于估算,通常取抗冲剪强度等于该材料抗拉强度的。即因此,该冲件的落料力的计算公式为卸料力般情况下,冲裁件从板料切下以后受弹性变形及收缩影响。会使落料件梗塞在凹模内,而冲裁后剩下的板料则箍紧在凸模上。从凸模上将冲件或废料卸下来所需的力称卸料力。影响这个力的因素较多,主要有材料力学性能模具间隙材料厚度零件形状尺寸以及润滑情况等。所以要精确地计算这些力是困难的,般用下列经验公式计算卸料力式中冲裁力顶件力及卸料力系数,其值可查表。这里取为.。因此拉深力带凸缘圆筒形零件的拉深力近似计算公式为式中圆筒形零件的凸模直径系数,这里取.。材料的抗拉强度因此压边力压边力的大小对拉深件的质量是有定影响的,如果过大,就要增加拉深力,因而会使制件拉裂,而压边圈的压力过小就会使工件的边壁或凸缘起皱,所以压边圈的压力必须适当。合适的压边力范围般应以冲件既不起皱又使得冲件的侧壁和口部不致产生显著的变薄为原则。压边力的大小和很多因素有关,所以在实际生产中,可以根据近似的经验公式进行计算。式中毛坯直径冲件的外径单位压边力这里的值取.。所以.反拉深过程反拉深力通常反拉深力要比正常拉深力大。即所以有顶料力逆着冲裁方向顶出卡在凹模里的料所需要的力叫顶料力,顶料力的经验计算公式为式中冲裁力顶料力系数,这里查表取.。所以有.拉深功的计算拉深所需的功可按下式计算式中最大拉深力而冲压加工工序很多,各种工序中的工艺性又不尽相同。即使同个零件,由于生产单位的生产条件工艺装备情况及生产的传统习惯等不同,其工艺性的涵义也不完全样。这里我们重点分析零件的结构工艺性。该零件为空气滤清器壳,结构简单,对称,是典型的冲压件。在冲压过程中要注意控制冲载程度,加工时,根据零件的结构,形状等些技术要求,应考虑以下几点凸凹模间隙的确定对于断面垂直度尺寸精度要求不高的零件,在保证零件要求的前提下,应以降低冲载力,提高模具寿命为主,采用大间隙对于断面垂直度尺寸精度要求较高的零件,应选用较小的间隙值。间隙。考虑模具刃口钝利情况当模具刃口磨损成圆角变钝时,刃口与材料接触面积增加,应力集中效应减轻,挤压作用大,延缓了裂纹的产生,制件圆角大,光亮带宽,但裂纹发生点要由刃口侧面向上移动,毛刺高度加大,即使间隙合理,也仍会产生毛刺。根据零件图,初步分析可以知道空气滤清器壳零件的冲压成形需要多道工序才能完成,进行反拉深,形成外形尺寸形状,其次冲孔。综上所述,空气滤清器壳由原始毛坯冲压成形应包括的基本工序有反拉深,冲孔复合模等。.确定工艺方案和模具形式在冲压分析的基础上,找出工艺与模具设计的特点与难点,根据实际情况提出各种可能的冲压工艺方案,内容包括工序性质,工序数目,工序顺序及组合方式等,有时同种冲压零件也可能存在多个可行的方案,通常每种方案各有优缺点,应从产品质量生产效率,设备占用情况,模具制造的难易程度和模具的使用寿命的高低,生产成本,操作方便与安全程度等方面进行综合分析比较,确定出适合于现有生产条件的最佳方案,故在定的条件下,以最简单的方法,最快的速度,最少的劳动量,最少的费用,可靠的加工出符合图样各项要求的零件,在保证加工质量的前提下,选择经济合理的工艺方案。确定工艺方案及模具形式根据对冲压零件的形状尺寸精度及表面质量要求的分析结果,确定冲压所需的基本的工序,反拉深,冲孔复合。根据初步工艺计算,确定工艺数目,如冲压次数等。根据个别工序的变形特点质量要求等确定工序顺序。般可按照下列原则进行对冲带孔的或有缺口的冲裁件,如选用简单模,般先落料,再冲孔或切口,使用级进模,则先冲空孔或切口后落料对于到孔的拉深件,般先拉深,后冲孔,但孔的位置在零件底部且孔径尺寸要求不高时,也可先冲孔后拉深。对于形状复杂的拉深件,为便于材料变形和流动,应先形成内部形状,再拉深外部形状。整形或校平工序,应在冲压件基本成型以后进行。根据生产批量和条件冲压加工条件和模具制造条件确定工序组合。生产批量大时,冲压工序应尽可能组合在起,用复合模具小批量生产用单工序简单模。由于离合器冲压成形需要的多道工序完成,因此选择合理的成形工艺方案十分重要,考虑到生产批量大,应在生产合格零件的基础上尽量提高生产效率,降低生产成本。要提高生产成本,应该尽量选择合理的工艺方案,选择复合能复合的工序,但复合程度太高,模具的结构复杂,安装调试困难,模具成本高,同时可能降低模具的强度,缩短模具寿命。根据零件形状确定冲压工序类型和选择工序顺序,为了提高生产率,保证模具结构简单,冲压件尺寸稳定精度高,冲压该零件的基本工序为反拉深,冲孔复合模。响冲压件成本和质量的重要因素。模具设计和制造需要较多的时间,这就延长了新冲压件的生产准备时间。模座模架导向件的标准化和发展简易模具供小批量生产复合模多工位级进模供大量生产,以及研制快速换模装置,可减少冲压生产准备工作量和缩短准备时间,能使适用于减少冲压生产准备工作量和缩短准备时间,能使适用于大批量生产的先进冲压技术合理地应用于小批量多品种生产。冲压设备除了厚板用水压机成形外,般都采用机械压力机。以现代高速多工位机械压力机为中心,配置开卷矫平成品收集输送等机械以及模具库和快速换模装置,并利用计算机程序控制,可组成高生产率的自动冲压生产线。在每分钟生产数十数百件冲压件的情况下,在短暂时间内完成送料冲压出件排废料等工序,常常发生人身设备和质量事故。因此,冲压中的安全生产是个非常重要的问题。.冲压技术的发展趋势进入年代以来,高新技术全面促进了传统成形技术的改造及先进成形技术的形成和发展。世纪的冲压技术将以更快的速度持续发展,发
下一篇
空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图01空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图02空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图03空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图04空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图05空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图06空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图07空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图08空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图09空气滤清器壳的正、反拉深、冲孔复合模设计CAD截图10
本资源为压缩包,下载后将获得以下全套资料(图纸+论文+其他)

A1 反拉深凹模固定板.dwg A1 反拉深凹模固定板.dwg (CAD图纸)

A1 上模座.dwg A1 上模座.dwg (CAD图纸)

A1 凸凹模固定板.dwg A1 凸凹模固定板.dwg (CAD图纸)

A1下模座.dwg A1下模座.dwg (CAD图纸)

A3  凸凹模.dwg A3 凸凹模.dwg (CAD图纸)

A3 拉深凹模.dwg A3 拉深凹模.dwg (CAD图纸)

A3 上垫板.dwg A3 上垫板.dwg (CAD图纸)

A3 压入式模柄.dwg A3 压入式模柄.dwg (CAD图纸)

A4 冲孔凸模.dwg A4 冲孔凸模.dwg (CAD图纸)

A4 顶板.dwg A4 顶板.dwg (CAD图纸)

B型导套.dwg B型导套.dwg (CAD图纸)

B型导柱.dwg B型导柱.dwg (CAD图纸)

表格.doc 表格.doc

答辩及最终成绩评定表.doc 答辩及最终成绩评定表.doc

答辩资格审查表.doc 答辩资格审查表.doc

工作中期检查表.doc 工作中期检查表.doc

开题报告.doc 开题报告.doc

评阅评语表.doc 评阅评语表.doc

任务书.doc 任务书.doc

上垫板A2.dwg 上垫板A2.dwg (CAD图纸)

实习总结.doc 实习总结.doc

说明书副本.doc 说明书副本.doc

说明书-最.doc 说明书-最.doc

外文原文.pdf 外文原文.pdf

译文.doc 译文.doc

正文.doc 正文.doc

指导教师评阅表.doc 指导教师评阅表.doc

总装配图.dwg 总装配图.dwg (CAD图纸)

仅支持预览图纸,请谨慎下载!
  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为RAR文档,建议你点击RAR查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档