斗回到作业点上方,以便进行下工作循环。.液压挖掘机传动原理液压挖掘机采用三组液压缸使工作装置具有三个自由度,铲斗可实现有限的平面转动,加上液压马达驱动回转运动,使铲斗运动扩大到有限的空间,再通过行走马达驱动行走移位,使挖掘空间可沿水平方向得到间歇地扩大,从而满足挖掘作业的要求。液压挖掘机传动示意图,如图.所示,柴油机驱动液压泵,操纵分配阀,将高压油送给各液压执行元件液压缸或液压马达驱动相应的机构进行工作。液压挖掘机的工作装置采用连杆机构原理,各部分的运动通过液压缸的伸缩来实现。反铲工作装置由铲斗斗杆动臂连杆及相应的三组液压缸组成。动臂下铰点铰接在转台上,通过动臂缸的伸缩,使动臂连同整个工作装置绕动臂下铰点转动。依靠斗杆缸使斗杆绕动臂的上铰点转动而铲斗铰接于斗杆前端,通过铲斗缸和连杆则使铲斗绕斗杆前铰点转动。挖掘作业时,接通回转马达,转动转台,使工作装置转到挖掘位置,同时操纵动臂缸小腔进油使液压缸回缩动臂下降至铲斗触地后再操纵斗杆缸或铲斗缸,液压缸大腔进油而伸长,使铲斗进行挖掘和装载工作。铲斗装满后,铲斗缸和斗杆缸停动并操纵动臂缸大腔进油,使动臂抬起,随即接通回转马达,使工作装置转到卸载位置,再操纵铲斗缸或斗杆缸回缩,使铲斗翻转进行卸土。卸完后,工作装置再转至挖掘位置进行第二次挖掘循环。在实际挖掘作业中,由于土质情况挖掘面条件以及挖掘机液压系统的不同,反铲装置三种液压缸在挖掘循环中的动作配合可以是多样的随机的。铲斗斗杆动臂连杆液压油缸挖掘装置回转装置行走装置图.液压挖掘机传动示意图总之,液压挖掘机是由多学科多系统组成的有机整体,只有在系统层面上的各系统各学科协同优化才能获取挖掘机整机的最佳性能。液压挖掘机工况分析及液压系统设计方案的确定要了解和设计挖掘机的液压系统,首先要分析液压挖掘机的工作过程及其作业要求,掌握各种液压作用元件动作时的流量力和功率要求以及液压作用元件相互配合的复合动作要求和复合动作时油泵对同时作用的各液压作用元件的流量分配和功率分配。.液压挖掘机的工况液压挖掘机的作业过程包括以下几个动作如图.所示动臂升降斗杆收放铲斗装卸转台回转整机行走以及其它辅助动作。除了辅助动作例如整机转向等不需全功率驱动以外,其它都是液压挖掘机的主要动作,要考虑全功率驱动。动臂升降斗杆收放铲斗装卸平台台回转整机行走图.液压挖掘机的运动图由于液压挖掘机的作业对象和工作条件变化较大,主机的工作有两项特殊要求实现各种主要动作时,阻力与作业速度随时变化,因此,要求液压缸和液压马达的压力和流量也能相应变化为了充分利用发动机功率和缩短作业循环时间,工作过程中往往要求有两个主要动作例如挖掘与动臂提升与回转同时进行复合动作。液压挖掘机个作业循环的组成和动作的复合主要包括挖掘通常以铲斗液压缸或斗杆液压缸进行挖掘,或者两者配合进行挖掘,因此,在此过程中主要是铲斗和斗杆的复合动作,必要时,配以动臂动作。满斗举升回转挖掘结束,动臂液压缸将动臂顶起,满斗提升,同时回转第章挖掘机液压系统的设计要求和分析方法液压马达使转台转向卸土处,此时主要是动臂和回转的复合动作。卸载转到卸土点时,转台制动,用斗杆液压缸调节卸载半径,然后铲斗液压缸回缩,铲斗卸载。为了调整卸载位置,还要有动臂液压缸的配合,此时是斗杆和铲斗的复合动作,间以动臂动作。空斗返回卸载结束,转台反向回转,动臂液压缸和斗杆液压缸配合,把空斗放到新的挖掘点,此时是回转和动臂或斗杆的复合动作。挖掘工况分析挖掘过程中主要以铲斗液压缸或斗杆液压缸分别单独进行挖掘,或者两者复合动作,必要时配以动臂液压缸的动作。般在平整土地或切削斜坡时,需要同时操纵动臂和斗杆,以使斗尖能沿直线运动,如图.,.所示。此时斗杆收回,动臂抬起,希望斗杆和动臂分别由独立的油泵供油,以保证彼此动作独立,相互之间无干扰,并且要求泵的供油量小,使油缸动作慢,便于控制。如果需要铲斗保持定切削角度并按照定的轨迹进行切削时,或者需要用铲斗斗底压整地面时,就需要铲斗斗杆动臂三者同时作用完成复合动作,如图.,.所示。图.斗尖沿直线平整土地图图.斗尖沿直线切削斜坡图图.铲斗底压整地面图图.铲斗底保持定角度切削图单独采用斗杆挖掘时,为了提高掘削速度,般采用双泵合流,个别也有采用三泵合流。单独采用铲斗挖掘时,也有采用双泵合流的情况。下面以三泵系统为例,来说明复合动作挖掘时油泵流量的分配情况和分合流油路的连接情况。液压马达使转台转向卸土处,此时主要是动臂和回转的复合动作。当斗杆和铲斗复合动作挖掘时,供油情况如图.所示。当斗杆油压接近溢流阀的压力时,原来溢流的油液此时供给铲斗有效利用当铲斗和动臂复合动作挖掘时,由于动臂仅仅起调解位置的作用,主要是斗杆进行挖掘,因此采用斗杆优先合流双泵供油,如图.所示。图.三泵供油系统示意图当动臂斗杆和铲斗复合运动时,为了防止同油泵向多个液压作用元件供油时动作的相互干扰,般三泵系统中,每个油泵单独对个液压作用元件供油较好。对于双泵系统,其复合动作时各液压作用元件间出现相互干扰的可能性大,因此需要采用节流等措施进行流量分配,其流量分配要求和三泵系统相同。当进行沟槽侧壁掘削和斜坡切削时,为了有效地进行垂直掘削,还要求向回转马达提供压力油,产生回转力,保持铲斗贴紧侧壁进行切削,因此需要同时向回转马达和斗杆供油,两者复合动作,如图.所示。回转马达和斗杆收缩同时动作,由同个油泵供油,因此需要采用回转优先油路,否则铲斗无法紧贴侧壁,使掘削很难正常进行。在斗杆油缸活塞杆端回油路上设置可变节流阀,此节流阀的开口度即节流程度由回转先导压力来控制。回转先导压力越大,节流阀开度越小,节流效应越大,则斗杆油缸回油压力增高,使得油泵的供油压力也提高。因此随着回转操纵杆行程的增大,回转马达油压增加,回转力增大。图.沟槽侧壁掘削和斜坡掘削时,油泵供油连接情况挖掘过程中还有可能碰到石块树根等坚硬障碍物,往往由于挖不动而需要短时间增大挖掘力,希望液压系统能暂时增压,能提高主压力阀的压力。满斗举升回斗工况分析挖掘结束后,动臂油缸将动臂顶起,满斗举升,同时回转液压马达使转台转向卸载处,此时主要是动臂和回转马达的复合动作。动臂抬升和回转马达同时动作时,要求二者在速度上匹配,即回转到指定卸载位置时,动臂和铲斗自动提升到合适的卸载高度。由于卸载所需的回转角度不同,随液压挖掘机相对自卸车的位置而变,因此动臂提升速度和回转马达的回转速度的相对关系应该是可调整的。卸载回转角度大,则要求回转速度快些,而动臂的提升速度慢些。在双泵系统中,回转起动时,由于惯性较大,油压会升得很高,有可能从溢流阀溢流,此时应该将溢流的油供给动臂,如图.所示。在回转和动臂提升的同时,斗杆要外放,有时还需要对铲斗进行调整。这时是回转马达动臂斗杆和铲斗进行复合动作。由于满斗提升时动臂油缸压力高,导致变量泵流量减小,为了使动臂提升和回转斗杆外放相互配合动作,由个油泵专门向动臂油缸供油,另个油泵除了向回转马达和斗杆供油外,还有部分油供给动臂,如图.所示。但是由于动臂提升时油压较高,单向阀大部分时间处于关闭状态,因此左侧油泵只向回转马达和斗杆供油。三泵系统的供油情况如图.所示。各个油泵分别向个液压作用元件供油,复合动作时无相互干扰。卸载工况分析回转至卸载位置时,转台制动,用斗杆调节卸载半径和卸载高度,用铲斗油缸卸载。为了调整卸载位置,还需要动臂配合动作。卸载时,主要是斗杆和铲斗复合动作,间以动臂动作。图.回转举升供油情况空斗返回工况分析当卸载结束后,转台反向回转,同时动臂油缸和斗杆油缸相互配合动作,把空斗放在新的挖掘点。此工况是回转马达动臂和斗杆复合动作。由于动臂下降有重力作用,压力低变量泵流量大下降快,要求回转速度快,因此该工况的供油情况为个油泵的全部流量供回转马达,另油泵的大部分油供给动臂,少部分油经节流阀供给斗杆,如图.所示。图.空斗返回供油情况发动机在低转速时油泵供油量小,为防止动臂因重力作用迅速下降和动臂油缸产生吸空现象,可采用动臂下降再生补油回路,利用重力将动臂油缸无杆腔的油供至有杆腔。行走时复合动作在行走的过程有可能要求对作业装置液压元件如回转机构动臂斗杆和铲斗进行调整。在双泵系统中,个油泵为左行走马达供油另个油泵为右行走马达供油,此时如果液压元件动作,使油泵分流供油,就会造成侧行走速度降低,影响直线行驶性,特别是当挖掘机进行装车运输或上下卡车行走时,行驶偏斜会造成事故。为了保证挖掘机的直线行驶性,在三泵供油系统中,左右行走马达分别由个油泵单独供油,另个油泵向其它液压作用元件如动臂斗杆铲斗和回转供油,如图.所示。对于双泵系统,目前采用以下供油方式个油泵并联向左右行走马达供油,另个油泵向其他液压作用元件供油,其多余的油液通过单向阀向行走马达供油,如图.所示双泵合流并联向左右行走马达和作业装置液压作用元件同时供油,如图.所示。图.行走复合动作时的几种供油情况.挖掘机液压系统的设计要求液压挖掘机的动作繁复,且具有多种机构,如行走机构回转机构动臂斗杆和铲斗等,是种具有多自由度的工程机械。这些主要机构经常起动制动换向,外负载变化很大,冲击和振动多,因此挖掘机对液压系统提出了很高的设计要求。根据液压挖掘机的工作特点,其液压系统的设计需要满足以下要求动力性要求所谓动力性要求,就是在保证发动机不过载的前提下,尽量充分地利用发动机的功率,提高挖掘机的生产效率。尤其是当负载变化时,要求液压系统与发动机的良好匹配,尽量提高发动机的输出功率。例如,当外负载较小时,往往希望增大油泵的输出流量,提高执行元件的运动速度。双泵液压系统中就常常采用合流的方式来提高发动机的功率利用率。操纵性要求调速性要求挖掘机对调速操纵控制性能的要求很高,如何按照驾驶员的操纵意图方便地实现调速操纵控制,对各个执行元件的调速操纵是否稳定可靠,成为挖掘机液压系统设计十分重要的方面。挖掘机在工作过程中作业阻力变化大,各种不同的作业工况要求功率变化大,因此要求对各个执行元件的调速性要好。复合操纵性要求挖掘机在作业过程中需要各个执行元件单独动作,但是在更多情况下要求各个执行元件能够相互配合实现复杂的复合动作,因此如何实现多执行元件的复合动作也是挖掘机液压系统操纵性要求的方面。当多执行元件共同动作时,要求其相互间不千涉,能够合理分配共同动作时各个执行元件的流盘,实现理想的复合动作。尤其对行走机构来说,左右行走马达的复合动作问题,即直线行驶性也是设计中需要考虑的重要方面。如果挖掘机在行使过程中由于液压泵的油分流供应,导致侧行走马达速度降低,形成挖掘机意外跑偏,很容易发生事故。另外,当多执行元件同时动作时,各个操纵阀都在大开度下工作,往往会出现系统总流量需求超过油泵的最大供油流量,这样高压执行元件就会因压力油优先供给低压执行元件而出现动作速度降低,甚至不动的现象。因此,如何协调多执行元件复合动作时的流量供应问题也是挖掘机液压系统设计中需要考虑的。节能性要求挖掘机工作时间长,能量消耗大,要求液压系统的效率高,就要降低各个执行元件和管路的能耗,因此在挖掘机液压系统中要充分考虑各种节能措施。当对各个执行元件进行调速控制时,系统所需流量大于油泵的输出流量,此时必然会导致部分流量损失掉。系统要求此部分的能量损失尽量小当挖掘机处于空载不工作的状态下,如何降低泵的输出流量,降低空载回油的压力,也是降低能耗的关键。安全性要求挖掘机的工作条件恶劣,载荷变化和冲击振动大,对于其液压系统要求有良好的过载保护措施,防止油泵过载和因外负载冲击对各个液压作用元件的损伤。回转机构和行走装置有可靠的制动和限速防止动臂因自重而快带下降和整机超速溜坡。其它性能要求实现零部件的标准化组件化和通用化,降低挖掘机的制造成本液压挖掘机作业条件恶劣,各功能部件要