1、“.....即采用块长宽高的块铝合金板作为机器人的机身,并制作成个框架。电机安装在机器人的机身中间如图所示。图.机身尺寸如上图,机器人框架上端面三个的孔是用来安装三个齿轮轴的,个的孔是用来安装机器人的回转机构,个的孔是用来安装步进电机的,在安装的时候要保证各齿轮之间是相互啮合的。框架的中间是空的,这样急节省了材料又减轻了机器人本身的重量。可以在机身框架中安装两根导轨,用来保证安装在机身中间的机器人前进机构可以自由伸缩,并能达到机器人的前进的行程要求。图.机身尺寸设计如图是机器人的前进机构简图。前进机构前后两个的圆孔用来安装机器人的升降机构,并在升降机构的下边分别安装两个电磁脚,这样便保证了机器人的稳定性。前进机构总长,宽,中间是空的,在中间的两个薄板的内壁上分别安装两个齿条,用来和传动齿轮啮合,这样就可以使前进装置相对于机器人的机身运动了。采用这样设计的优点是将机器人分成两个部分,个是机器人的机身,个是机器人的前进机构,可以节约材料,减少机器人的自身重量,最主要的是能够保证机器人的传动稳定,运动的灵活性,精简了机器人的结构......”。
2、“.....如图所示。整个机器人系统设计为两个自由度,将运动分解为两部分移动部分和回转部分。移动部分占个自由度,即使机器人前后的移动机构回转部分占个自由度,即控制机器人方向的旋转运动机构,这两个自由度之间没有耦合,相互不干扰。图.总体布局图.传动系统设计传动装置的作用主要是将驱动元件的动力传递给机器人相应的执行部件,以实现各种预定的运动。目前常用的传动方式有齿轮传动皮带轮传动链条传动齿轮齿条传动蜗轮蜗杆传动谐波减速传动以及螺旋传动等。谐波减速传动具有体积小结构紧凑效率高能获得大的传动比等优点,但存在扭转刚度较低且传动比不能太小的缺点皮带轮传动可以实现过载保护,可是存在弹性滑动,和链传动样使用段时间后易松弛,传动运转过程中还产生动载荷链传动虽然成本低,但链传动的制造与安装精度要求低,不适合用在要求传递精度高的机构当中,链传动在两根平行轴间职能用于同向回转的传动,运转时不能保持恒定的传动比,磨损后易发生跳齿,工作时候噪音大,不宜在载荷变化很大和急速反向的传动中应用。因此,它们常用于传动精度要求不高的场合......”。
3、“.....齿轮传动的主要特点有效率高在常用的机械传动中,以齿轮传动效率为最高。如级圆柱齿轮传动的效率可达。这对功率的传递十分重要,因为即使效率只提高,也有很大的经济意义。结构紧凑在同样的使用条件下,齿轮传动所需的空间尺寸般较小。工作可靠寿命长设计制造正确合理使用维护良好的齿轮传动,工作十分可靠,寿命可长达二十年,这也是其他机械传动所不能比拟的。这对机械传动来说有着很大的经济性和实用性。传动比稳定传动比稳定往往是对传动性能的基本要求。齿轮传动获得广泛应用,也就是由于具有这特点。但是齿轮传动的制造及安装精度要求高,价格较贵,切不宜用于传动距离大的场合。故选用齿轮传动作为机器人回转装置的基本传动装置,这样便可以保证了机器人的回转运动。如图所示,是机器人的回转机构。图.机器人回转机构机器人前进部分传动而能够使机器人的前进机构运动主要是依靠齿轮齿条进行动力的传递。选用齿轮齿条传递,主要是考虑机器人的内部结构的要求,将齿条安装固定在前进装置的内表面上,如图所示,这样便可以与齿轮啮合上,并能传递齿轮所传递的驱动力,从而使得机器人前进。图......”。
4、“.....蜗杆传动是在空间交错的两轴间传递运动和动力的种传动机构,两轴线交错的夹角可为任意值,通常用的为。这种传动由于具有下述特点,故应用颇为广泛。当使用单头蜗杆相当于单线螺纹时,蜗杆旋转周,涡轮只转过个齿距,因而能实现大的传动比。在动力传动中,般传动比在分度机构或者手动机构的传动中,传动比可达若只传递运动,传动比可达。由于传动比大,零件数目又少,因而结构很紧凑。在蜗杆传动中,由于蜗杆齿是连续不断的螺旋齿,它和涡轮齿是逐渐进入啮合及逐渐退出啮合的,同时啮合的齿对有较多,故冲击载荷小,传动稳定,噪音低。当蜗杆的螺旋线升角小雨啮合面的当量摩擦角时,蜗杆传动便具有自锁性。蜗杆传动与螺旋齿轮传动相似,在啮合处有相对滑动。当滑动速度很大,工作条件不够良好的时候,会产生较严重的摩擦与磨损,从而引起过分发热,使润滑情况恶化。因此摩擦损失较大,效率低,当传动具有自锁性时,效率仅为.左右。同时由于摩擦与磨损严重,常需耗用有色金属制造涡轮或蜗圈,以便与钢制涡轮配对组成减摩性良好的滑动摩擦副......”。
5、“.....如图所示。环面蜗杆的传动特征是,蜗杆体在轴外的外形是以凹圆弧为母线所形成的旋转曲面,所以把这种蜗杆传动叫做环面蜗杆传动。在这种传动的啮合带内,涡轮的节圆位于蜗杆的节弧面上,亦即蜗杆的节弧沿涡轮的节圆包着涡轮。在中间平面内,蜗杆和涡轮都是直线齿廓。由于同时相啮合的齿对多,而且齿轮的接触线与蜗杆齿运动的方向近似于垂直,这就大大改善了轮齿受力情况和润滑油膜形成的条件,因而承载能力约为阿基米德蜗杆传动的倍,效率般高达但它需要较高的制造和安装精度。整体升降机构如图所示。图.环面蜗杆传动图.机器人升降机构.驱动系统性能分析与方案设计机器人驱动系统的设计往往要受到作业环境条件的限制,同时还要考虑价格因素的影响以及所能达到的技术水平。目前机器人的驱动方式主要有液压驱动气动驱动和电气驱动三种形式。液压驱动系统能够提供较大的驱动压力和功率,具有结构简单性能稳定等特点,液压伺服驱动系统响应速度快,可达到较高的定位精度和刚度,但油路系统复杂,工作性能受环境影响较大,移动性能差,且易造成泄漏现象......”。
6、“.....气动系统具有结构简单动作迅速,可在恶劣的环境中工作,但气动装置也存在噪声问题,只适用于精度要求不高的点位系统中。电气驱动系统具有精度高控制准确响应迅速等优点。综合考虑各种驱动式的优缺点,选用电气驱动方式。电气驱动方式包括普通电机直流伺服电机交流伺服电机和步进电机以及力矩电机等驱动方式。伺服电机转子惯量小动态特性好,由伺服电动机所构成的机器人驱动系统具有运行精度高调速范围广速度运行平滑具有高可靠性并易于控制等优点,交直流伺服电动机己成为机器人驱动系统的主流,直流伺服电动机的电刷易磨损形成电火花,限制了其应用范围。近年来随着交流调速技术的迅速发展,交流电机的驱动系统得到了广泛的应用,但是交流伺服电机必须采用闭环控制方式,这种复杂的控制系统造成控制成本大大提高。随着集成电路技术的发展,伺服系统的价格在大幅度降低,可靠性也得到了提高。步进电动机是种可以直接将数字脉冲信号转换成机械位移的机电执行元件,具有控制简单响应速度快工作可靠无累计误差等优点。它能够直接接受数字信号,无需中间转换,直接输出的位移量与输入数字脉冲量相对应......”。
7、“.....步进电机以开环方式工作,可省去伺服电机驱动装置中位置检测与反馈部分以及,转换,从而简化了系统结构,使控制成本大大降低。另外,步进电机的抗干扰能力强无累计定位误差,可重复反转而不损坏,并且步进电机的位置和速度控制简单,具有定精度,使用与维护都很方便。传统观念认为步进电机的控制性能差难以实现机器人的空间轨迹控制,因而步进电机很少用于机器人的轨迹控制。考虑到步进电机的输出不是连续量,为了达到些系统较高的定位精度要求,可以对步进电机驱动系统进行细分控制,也可以采用闭环控制方式获得更高的驱动性能。由于步进电机驱动具有较好的经济性,随着电机制造技术的提高,尤其是步进电机驱动技术的革命性变化,步进电机也己经被广泛应用于数控机床复印机打印机以及机器人关节臂的驱动上。平面关节型机器人多采用步进电机直接驱动方式,不但可以节省机械传动装置,而且可以有效的消除机械减速所带来的误差和效率的降低,提高运行的速度和定位精度。开环控制由于不存在噪声干扰问题,工作安全可靠,系统简单,价格低廉,特别是电子计算机技术的迅速发展和提高......”。
8、“.....考虑到控制的方便性可靠性以及系统整体上的经济性,对移动系统和控制手爪转动的电机均采用步进电机构成的开环驱动控制方式。开环控制可以大大简化系统结构,减轻计算机的运算负担,并且可以降低成本和提高可靠性。控制手抓开合的电机则选用般的交流电机即可。在步进电机的选型上,考虑到步进电机品种规格较多,仔细分析它们的特点,来恰到好处的选择。步进电机按结构和工作原理可分为反应式永磁式以及混合式等几种。反应式步进电机又称可变磁阻型,多为单极性励磁,结构简单,精度容易保证,步距角小,启动和运行频率较高,但励磁电流较大,电机内部阻尼小,低频时容易产生振荡,断电后无定位转矩。永磁式步进电机步距角大,启动频率较低,但控制功率较小,效率高,造价便宜,内部阻尼大,不易振荡,断电后有定位转矩。与相比转矩大,但转子惯性也较大。混合式步进电机是永磁式和反应式相结合的种形式。兼有磁阻式步距角小响应频率高和永磁式励磁功率小效率高的优点。但是结构复杂,需要正反脉冲供电,成本较高。如图所示的电机模拟图,可以清楚的看到电机的内部。图......”。
9、“.....对该机器人的控制移动部分回转和机器人升降装置的驱动由于其要求既具有较高的控制性能,又具有定位转矩,所以均选用混合式步进电机。步进电机选型时还需要考虑实际工作需要,在初期确定减速比电机转速负载转速之后,通常考虑以下几方面的问题选择步进电机的步距角,要求,其中为负载轴要求的脉冲当量选择步进电机的转矩初步选择步进电机时,可按下式选择步进电机的最大转矩为折算到电机轴上的总负载转矩,包括负载的阻尼转矩和加速转矩。系数,般取.步进电机运行频率为式中所要求的电机轴的转速负载轴的转速步距角步进电机的矩频特性般步进电机转矩随运行频率升高而迅速下降,经过改进的步进电机可以在个很宽的范围内保持转矩在个很小的幅度内变化。但是必须保证在实际运行工况下,选用的电机可以给出足够转矩。.控制系统方案设计计算机系统是整个机器人控制系统核心部分,结构和功能的划分以及设计的合理性直接影响着整个机器人系统功能的实现,计算机控制系统应具有较强的可靠性较高的运行速度以及较好的性能价格比,在满足工作性能要求基础上体现出较好的经济性要求......”。
010.jpg
011.jpg
毕业论文.doc
电磁脚A1.dwg
(CAD图纸)
封面.doc
回转升降机构A0.dwg
(CAD图纸)
机器人总体图.dwg
(CAD图纸)
进给机构装配图.dwg
(CAD图纸)
开题报告.doc
目录xin.doc
摘要(和外文).doc
轴A3.dwg
(CAD图纸)
最终外文.doc