帮帮文库

返回

(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载) (毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)

格式:RAR 上传:2025-08-10 15:03:17
电粘性液压油,实现电液粘度转换,从而达到控制流阻实现对系统的压力和流量控制的目的。显然,这种流阻控制方式更为简便,它无需电机转换元件。但是目前这种技术还未达到实用阶段和要求。目前生产技术上能实现的可控流阻结构形式是通过电机械转换器实现间接的电液转换。将输入的电信号转换成机械量。这种电机械转换器是电液比例阀的关键组件之,它的作用是把经过放大后的输入信号电流成比例的转换成机械量。根据控制的对象或液压参数的不同,这个力或者传给压力阀的根弹簧,对它进行预压缩,或者输出的力力矩与弹簧力相比较,产生个与电流成比例的小位移或转角,操纵阀芯动作,从而改变可控流阻的液阻。可见,电机转换器是电液比例阀的驱动装置。它的静态,动态特性对整个比例阀的设计和性能起着重要的作用。电机械转换器分类.按其作用原理和磁系统的特征分,主要有电磁式感应式电动力式电磁铁式永磁式极化式动圈式动铁式直流交流。.按其结构形式和性能分,主要有开关型电磁铁比例电磁铁动圈式马达力矩马达步进电动机等。比例电磁铁本设计属于电液比例阀大类,顾名思义其应用的电机械转换器应是比例电磁铁。比例电磁铁的功能是将比例控制放大器输出的电信号转换成力或位移。比例电磁铁推力大,结构简单,对油液清洁度要求不高,维护方便,成本低,衔铁腔可做成耐高压结构,是电液比例控制元件中广泛应用的电机械转换器件。比例电磁铁的特性及工作可靠性,对电液比例控制系统和元件的性能具有十分重要的影响,是电液比例控制系统的关键部件之。比例电磁铁的分类比例电磁铁的类型按照工作原理主要分为如下几类力控制型这类电磁铁的行程短,输出力与输入电流成正比,常用在比例阀的先导控制级上行程控制型由力控制型加负载弹簧共同组成,电磁铁输出的力先通过弹簧转换成输出位移,输出位移与输入电流成正比,工作行程达,线性好,可以用在直控式比例阀上位置调节型衔铁的位置由传感器检测后,发出个阀内反馈信号,在阀内进行比较后重新调节衔铁的位置。在阀内形成闭环控制,精度高,衔铁的位置与力无关。精度高的比例阀如德国的博世意大利的阿托斯等都采用这种结构。在本设计中,由于比例电磁铁将用于控制先导阀三通减压阀,以间接控制主阀,故采用第类即力控制比例电磁铁。比例电磁铁应满足的要求具有水平吸力特性,即输出的机械力与电信号大小成比例,与衔铁位移无关,能把电气信号按比例地连续地转换成机械力输出给液压阀有足够的输出力和行程,结构紧凑,体积小线性好,死区小,灵敏度高动态性能好,响应速度快比例阀在长期工作中,其温升不得超过要求。在允许温升下能稳定工作能承受液压系统的高压,抗干扰性好对于以上这些要求,很多情况下难以同时得到满足,这时应根据具体应用场合加以考虑。对些应用场合,可能输出的有效作用力及行程最为重要。比例电磁铁的结构图比例电磁铁的结构比例电磁铁结构如上图,它由线圈衔铁推杆外壳等组成。当有信号输入线圈时,线圈内磁场对衔铁产生作用力,衔铁在磁场中按信号电流的大小和方向成比例连续地运动,再通过固连在起的销钉带动推杆运动,从而控制滑阀阀芯的运动。比例电磁铁的位移力特性比例电磁铁是种湿式直电磁铁,普通电磁换向阀所用电磁铁只要求有吸合和断开两个位置,并且为了增加电磁吸引力,磁路中几乎没有气隙,而比例电磁铁根据电磁原理,在结构上进行特殊设计,使之形成特殊的磁路这种磁路在衔铁的工作位置上磁路中必须保证定的气隙,以获得基本的吸力特性,即水平的位移力特性,能使其产生的机械量力或力矩和位移与衔铁的位移无关,而与输入电信号电流的大小成比例。这个水平力再连续地控制液压阀阀芯的位置,进而实现连续地控制液压系统的压力方向和流量。由于比例电磁铁可以在不同的电流下得到不同的力或行程,因此可以无级地改变压力流量。其原理见下图图比例电磁铁的特性比例电磁铁位移力特性的实现原理比例电磁铁的磁路在工作气隙附近被分为两个部分,其中的部分沿轴向穿过工作气隙进入极靴,产生端面力而另部分穿过径向间隙进入导套前端,产生轴向附加力。两者的综合就得到了比例电磁铁的水平位移力特性。该特殊形式磁路的形成,主要是由于采用了隔磁环节结构,构成了个带锥形周边的盆形极靴。比例电磁铁电流力特性由于本设计中用的比例电磁铁是力控制型,这种比例电磁铁的衔铁工作在有效行程区域内时,改变控制线圈的电流,可调节输出电磁力的大小。由于在比例放大器中设置了电流负反馈环节,在电流设定值恒定不变时,即使磁阻变化,也可使电磁力保持不变。下图为相应的电流力特性曲线。图比例电磁铁的电流力特性曲线.结构设计小结至此,比例节流阀的结构设计就完成了,最终完成的结构图及连接图详见附录。由图可见,插装式主阀阀芯上连有耐高压电感式位移传感器,以反馈回主阀阀芯位移参数,该位移参数经调制放大解调反馈至比例放大器的输入引脚。比例放大器的另个输入引脚是整个阀的外部控制接口,整个比例阀的参数将此引脚来控制。比例放大器对两引脚传来的值进行比较。当主阀阀心的实际位移值小于调定值时,比例放大器将通过输出引脚对比例电磁铁发出控制信号,使主阀阀心开口向着增大的方向移动反之若主阀阀心的实际位移值大于调定值时,比例放大器将使主阀阀心开口向着减小的方向移动,因而最终使阀心精确的处于调定值上。节流阀工作总原理分析及其性能参数指标.原理分析图电液比例节流阀的连接图上图为整个比例阀的连接示意图,比例节流阀工作时,比例放大器不断比较从其引脚传来的对节流阀的阀芯开度的设定值及由引脚反馈回的主阀阀芯的位移实际值,如果两者相等,当然比例控制系统不动作,维持原样不变。但二者会因为内外因素导致不相等,外部因素如外部对比例阀进行了重新调定,而内部原因则可能是液压系统的冲击负载的变化及其它不稳定的因素导致主阀阀芯偏移了设定值。当比例放大器检测到主阀阀芯实际值与比例放大器的设定值出现差值时,很明显控制系统的下步任务就是要去除该差值,正如第二章所述,反馈控制的原理即为“检测偏差用以纠正偏差”,那么,怎么样消除这偏差呢由前“主阀阀芯的受力分析”节所述可知,不管在正向通流情况下还是在反向通流情况下,主阀阀芯的增量为时,对应的控制腔压力增量都为这就是说要消除调定值与实际值之间的差值,应当使控制腔的压力产生个增量值,而由前所述,控制腔的压力是由本阀的先导阀电液比例三通减压溢流阀来调定的,先导阀的出口压力即为控制腔的压力,而先导阀的出口压力又受比例电磁铁的输出力来调定,故要使控制腔的压力发生变化,必须要使比例电磁铁的输出推力变化个增量。而由“先导阀阀芯详细受力分析”节可知比例电磁铁的输出推力增量与控制腔压力的关系为将式代入式,得到比例电磁铁的输出推力增量值与主阀阀芯的增量之间的关系式将参数代入得.该式的数学意义为要使阀芯开度变化,对应的比例电磁铁的输出推力应变化,举例说明,要想使阀芯开度变化,则比例电磁铁的输出推力应变化.。综合上面所述,比例放大器在经比较得出阀芯开度的实际值与经引脚输入的设定值之间的差值后,在比例放大器内经系列特定运算,如应用算法,经由输出引脚来控制比例电磁铁,使得比例电磁铁的输出推力变化个增量.。经过这过程后,差值将消除,主阀阀芯开度将精确的处于调定值上,这样就完成了个控制过程。即实现了主阀阀芯开度由比例放大器的输入端来调定的控制过程。而由第二章流量控制的基本原理中式,在主阀节流口前后压差不变的情况下,节流阀的流量与其阀芯开度成正比关系,那么比例放大器的输入端就最终控制了整个节流阀的流量。下面将对节流阀的性能指标进行分析.静态性能指标滞环电液比例阀的输入电流在正负额定值之间作次往复循环时,同输出值压力或流量对应的输入电流存在差值。通常规定差值中的最大值与额定电流的百分比为电液比例阀的滞环误差。滞环误差越小,电液比例阀静态性能越好,般允许最大滞环误差为。线性范围及线性度为了保证电液比例阀输出的流量或压力与输入的电流成正比变化,般将压力电流流量电流的工作范围取在特性曲线的近似直线部分,这个工作范围称为电液比例阀的线性范围。线性度是指线性范围内特性曲线与直线的最大位移相对于额定输入电流的百分比。选择电液比例阀时,应选线性范围宽及线性度小的阀。分辨率电液比例阀输出的流量或压力发生微小变化或时,所需要的输入电流的最小变化量与额定输入电流的百分比称为分辨率。分辨率小,静态性能好,但分辨率不能过小,否则会使阀的工作不稳定。重复精度在压力或流量下重复输入电流,多次输入电流的最大差值与额定输入电流的百分比称为重复精度。重复精度越小阀的性能越好。.动态性能指标阶跃响应当给定的输入电流为阶跃信号时,输出的压力或流量达到稳定状态所需的时间称为阶跃时间,它的大小反映了比例阀动作的灵敏度。阶跃时间般应小于.。所谓稳定状态系指输出信号大于调定值的的工况。频率响应当加入频率为的正弦扰动时,在稳定状态下输出和输入的复数比值关系称为频率响应。电液比例阀的频率响应定义在增益为滞后相位角为处,该处的频率越高,阀的性能越好。国产阀般为。电液比例控制系统在比例阀的结构设计完成之后,而因为比例阀将最终应用于比例控制系统中,故在本说明书的最后章对比例控制系统做个简单的介绍。现代微电子技术的发展,特别是计算机技术的普及与发展,为实现各类工艺过程的最佳控制提供了技术基础。因此,工程控制理论的应用已逐步从航天航空和军事工程领域普及到民用工业部门。电液比例控制技术作为连接现代微电子技术和大功率工程控制设备之间的桥梁,已经成为现代控制工程的基本技术构成之,在近年中得到了迅速发展。它与传统的电液伺服技术相比,具有可靠节能和廉价等明显特点,已应用于相当广泛的领域,形成了颇具特色的技术分支。目前,已引起工程控制界的密切而广泛重视,在机电液体化和工程设备实现计算机控制的技术革命过程中,电液比例控制技术将获得更新更快的发展。比例控制系统是电液控制技术的项新发展,是微电子技术与液压技术间的接口。德国博世公司开发的农业拖拉机液压提升器电子控制系统,引入了比例阀可编程序控制器和数据总线技术,使其电控系统功能更加完善,成本显著降低,迅速占领了欧美各种拖拉机的应用市场。.反馈的概念反馈就是指通过适当的检测装置将信号全部或部分返回输入量与输入量进行比较,比较的结果叫偏差。因此,基于反馈基础上的“检测偏差用以纠正偏差”的原理又称为反馈控制原理。同样,采用反馈控制原理的控制系统为反馈控制系统。.闭环控制与开环控制不包含外反馈的控制系统称为开环系统。比如比例阀控制液压缸或马达系统可以实现速度位移转速和转矩等的控制。开环系统的系统方框图如图所示。图开环控制系统示意图由于开环控制系统的精度比较低,无级调节系统输入量就可以无级调节系统输出量力速度以及加减速度等。这种控制系统的结构组成简单,系统的输出端和输入端不存在反馈回路,系统输出量对系统输入控制作用没有影响,没有自动纠正偏差的能力,其控制精度主要取决于关键元器件的特性和系统调整精度,所以只能应用在精度要求不高并且不存在内外干扰的场合。闭环控制包含外反馈回路的控制系统称为闭环控制系统,如果在比例阀本身的内反馈,也可以构成实际的局部小闭环控制。但般也不称为闭环系统。图闭环控制系统示意图闭环控制系统即反馈控制系统的优点是对内部和外部干扰不敏感,系统工作原理是反馈控制原理或按偏差调整原理。这种控制系统有通过负反馈控制自动纠正偏差的能力。下图为反馈控制系统框图。图典型的反馈控制系统框图反馈也带来了系统的稳定性问题。这类系统是检测偏差用以纠正偏差或者说是靠偏差进行控制,而在工作过程中系统总会存在偏差,由于元件的惯性如负载的惯性,很容易引起振荡,使系统不稳定。因此,精度和稳定性是闭环系统存在的对矛盾
下一篇
(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图01(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图02(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图03(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图04(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图05(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图06(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图07(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图08(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图09(毕业设计全套)带位移电反馈的二级电液比例节流阀设计(打包下载)CAD截图10
本资源为压缩包,下载后将获得以下全套资料(图纸+论文+其他)

DBJ01-00装配图.dwg DBJ01-00装配图.dwg (CAD图纸)

DBJ01-01主阀阀芯 a2.dwg DBJ01-01主阀阀芯 a2.dwg (CAD图纸)

DBJ01-02主阀弹簧 a3.dwg DBJ01-02主阀弹簧 a3.dwg (CAD图纸)

DBJ01-03主阀阀套 a2.dwg DBJ01-03主阀阀套 a2.dwg (CAD图纸)

DBJ01-04控制盖板 a1.dwg DBJ01-04控制盖板 a1.dwg (CAD图纸)

DBJ01-05先导阀顶盖 a3.dwg DBJ01-05先导阀顶盖 a3.dwg (CAD图纸)

DBJ01-06先导阀阀套.dwg DBJ01-06先导阀阀套.dwg (CAD图纸)

DBJ01-07先导阀阀芯.dwg DBJ01-07先导阀阀芯.dwg (CAD图纸)

DBJ01-08先导阀弹簧.dwg DBJ01-08先导阀弹簧.dwg (CAD图纸)

DBJ01-09先导阀底盖.dwg DBJ01-09先导阀底盖.dwg (CAD图纸)

DBJ01-10 通道块 a1.dwg DBJ01-10 通道块 a1.dwg (CAD图纸)

电液比例节流阀的连接及说明图.dwg 电液比例节流阀的连接及说明图.dwg (CAD图纸)

图3-1  控制盖板.DWG 图3-1 控制盖板.DWG

图3-10  先导阀结构示意图图.DWG 图3-10 先导阀结构示意图图.DWG

图3-11  先导阀的示意简图.DWG 图3-11 先导阀的示意简图.DWG

图3-12  比例元件电控系统基本电路框图.DWG 图3-12 比例元件电控系统基本电路框图.DWG

图3-13  比例电磁铁的结构.DWG 图3-13 比例电磁铁的结构.DWG

图3-14 比例电磁铁的特性.DWG 图3-14 比例电磁铁的特性.DWG

图3-15 比例电磁铁的电流-力特性曲线.DWG 图3-15 比例电磁铁的电流-力特性曲线.DWG

图3-2  控制盖板尺寸.DWG 图3-2 控制盖板尺寸.DWG

图3-3  主阀阀套的尺寸示意图.DWG 图3-3 主阀阀套的尺寸示意图.DWG

图3-4  主阀阀套尺寸.DWG 图3-4 主阀阀套尺寸.DWG

图3-5 主阀阀芯结构图.DWG 图3-5 主阀阀芯结构图.DWG

图3-6  插装阀面积比的示意图.DWG 图3-6 插装阀面积比的示意图.DWG

图3-7  直动式减压阀工作原理示意图.DWG 图3-7 直动式减压阀工作原理示意图.DWG

图3-8  先导阀示意图.DWG 图3-8 先导阀示意图.DWG

图3-9  先导阀阀芯受力示意图.DWG 图3-9 先导阀阀芯受力示意图.DWG

图4-1 电液比例节流阀的连接图.DWG 图4-1 电液比例节流阀的连接图.DWG

图5-1  开环控制系统示意图.DWG 图5-1 开环控制系统示意图.DWG

图5-2  闭环控制系统示意图.DWG 图5-2 闭环控制系统示意图.DWG

正文.doc 正文.doc

仅支持预览图纸,请谨慎下载!
  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为RAR文档,建议你点击RAR查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档