得到了解答,特别是宋又廉教授对我的图纸提出了许多有建设性的建议,对我的帮助很大,在此也表示深深的感谢。感谢老师同学家人以及所有默默无闻在背后鼓励我支持我的人,没有你们的帮助,我不会有今天的成就。另外还要感谢上海电机学院,为我们的毕业设计提供了优美的环境。!.!设根据公式,将已知条件带入得根据驱动力公式得由于实际采用的气压缸驱动力大于计算,把手抓的机械效率考虑在内,般取。取.夹紧气缸的设计主要尺寸的确定气缸工作压力的确定由表取气缸工作压力表气压负载常用的工作压力负载工作压力.气缸内径和活塞杆直径的确定可由下式推算出气压缸的内径预设活塞杆直径.,气缸工作压力.,根据机械设计手册气压传动分册,选取气压缸内径为。可以得出活塞杆内径为,选取。缸筒壁厚和外径的设计缸筒直接承受压缩空气压力,必须有定厚度。般气缸缸筒壁厚与内径之比小于或等于,其壁厚可按薄壁筒公式计算式中,缸筒壁厚,气缸内径,气缸试验压力,般取气缸工作压力缸筒材料许用应力。本设计手爪夹紧气缸缸筒材料采用为铝合金,代入己知数据,则壁厚为取,则缸筒外径为手部活塞杆行程长计算活塞杆的位移量可推得气缸的活塞行程与其使用场合及工作机构的行程比有关。多数情况下不应使用满行程,以免活塞与缸盖相碰撞,尤其用于夹紧等机构。为保证夹紧效果,必须按计算行程多加的行程余量。故气压传动手册圆整为。手爪部分总质量估算其中手爪部分和活塞杆材料采用钢,缸筒和端盖连接材料采用铝合金查相关手册可得,号钢密度为的密度为。手爪部分总质量约为.手爪夹持范围计算为了保证手爪张开角为,活塞杆运动长度为。手爪最小夹持半径手爪最大夹持半径图手爪张开示意图手爪夹持范围的计算,手指长,当手抓没有张开角的时候,如图所示,根据机构设计,它的最小夹持半径,当张开时,如图所示,最大夹持半径计算如下机械手的夹持半径从。.机械手手爪夹持精度的分析计算机械手的精度设计要求工件定位准确,抓取精度高,重复定位精度和运动稳定性好,并有足够的抓取能力。机械手能否准确夹持工件,把工件送到指定位置,不仅取决于机械手的定位精度由臂部和腕部等运动部件来决定,而且也于机械手夹持误差大小有关。特别是在多品种的中小批量生产中,为了适应工件尺寸在定范围内变化,定要进行机械手的夹持误差计算。图手爪夹持误差分析示意图该设计以棒料来分析机械手的夹持位置检测装置控制机械手执行机构的运动位置,并随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以定的精度达到设定位置。.机械手基本形式的选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下种直角坐标型机械手圆柱坐标型机械手球坐标极坐标型机械手多关节型机机械手。其中圆柱坐标型机械手结构简单紧凑,定位精度较高,占地面积小,容易实现。因此,本设计采用圆柱坐标型。图是机械手外观轮廓图。图机械手外观轮廓图.驱动机构的选择驱动机构是工业机械手的重要组成部分,工业机械手的性能价格比在很大程度上取决于驱动方案及其装置。根据动力源的不同,机械手的驱动方式共有三种方式气动方式,液压方式,电驱动方式。气动方式成本低,出力小,噪声大,控制简单。但难以准确控制位置和速度。属于简单非伺服型。液压方式功率重量比大,低速平稳,需液压动力源,漏油和油性变化会影响系统,各轴耦合较强,成本较高。可用于易爆的环境。电驱动方式.步进驱动功率小,开环控制,控制简单,可能失步。.直流驱动调速性能好,功率较大,效率较高,但换向器需维护,不易用于易爆,多粉尘的环境。.交流驱动维护简单,使用环境不受限制,成本较低,调速性差。根据课题要求确定圆柱坐标型机械手,利用双作用气缸驱动实现手臂上下运动双作用气缸驱动实现手臂的伸缩运动末端夹持器则采用夹持式手部结构,用小型单作用气压缸驱动夹紧手腕和机座的旋转用旋转气缸驱动实现。.机械手详细设计参数机械手的设计参数如下所示机械手重复定位精度.机械手最大抓重工件尺寸直径约,圆柱形,材料是铁质支座旋转角度为度最大速度度每秒物料盘采用步进电机控制每工步旋转角度度最大转度度每秒轴大臂上下移动距离为最大速度轴小臂上下移动距离为最大速度轴小臂伸缩距离最大速度手指开合角度为度最大速度度每秒,手爪旋转角度为度料槽小臂推动工件的推杆伸缩距离为最大速度。.本章小结本章主要讲述了机械手的工作原理和系统组成,并且简要介绍了执行部分。机械手动作形态采用圆柱坐标式,四自由度的运动执行均由气缸驱动完成。机械手手部结构设计及计算.手部结构四自由度气动简单,大大提高了系统的可靠性。而今,电磁阀的线圈功率越来越小,而的输出功率在增大,由直接控制线圈变得越来越可能。气动机械手气动控制越来越离不开,而阀岛技术的发展,又使在气动机械手气动控制中变得更加得心应手。总之,随着机械手发展的深度和广度以及机器人智能水平的提高,机械手已在众多领域得到了应用。从传统的汽车制造领域向非制造领域延伸。如采矿机器人建筑业机器人以及水电系统用于维护维修的机器人等。在国防军事医疗卫生食品加工生活服务等领域机械手的应用也越来越多。在未来几年,传感技术,激光技术,工程网络技术将会被广泛应用在机械手工作领域,这些技术会使机械手的应用更为高效,高质,运行成本低。据猜测,今后机器人将在医疗保健生物技术和产业教育救灾海洋开发机器维修交通运输和农业水产等领域得到应用。.本课题研究内容研究内容是设计个由控制的四自由度气动式机械手,机械手能完成手爪夹紧放松,手腕旋转,手臂伸缩,腰部的上升下降和机座的旋转功能。并且画出机械手的总装图和各部件的零件图。并且根据课题,设计出机械手的气路系统,包括元器件的选取和回路的设计,画出气路原理图。机械手控制部分由完成,通过设计要完成的选型的外部接线图以及根据机械手的流程图编写出梯形图。.课题研究的意义伴随着机电体化在各个领域的应用,机械设备的自动控制成分显得越来越重要,由于工作的需要,人们经常受到高温腐蚀及有毒气体等因素的危害,增加了工人的劳动强度,甚至于危机生命。因此机械手就在这样诞生了,机械手是机械手系统中传统的任务执行机构,是机器人的关键部件之。如蛇形机械手的出现,帮助人类完成了许多危险区域的任务。其中的工业机械手是近代自动控制领域中出现的项新技术,它的发展是由于其积极作用正日益为人们所认识它能部分地代替人工操作能按照生产工艺的要求,遵循定的程序时间和位置来完成工件的传送和装卸广泛的应用机械手,可以逐步改善劳动条件,更强与可控的生产能力,加快产品更新换代,提高生产效率和保证产品质量,消除枯燥无味的工作,节约劳动力,提供更安全的工作环境,降低工人的劳动强度,减少劳动风险,提高机床,减少工艺过程中的工作量及降低停产时间和库存,显著地提高劳动生产率,提高企业竞争力,加快实现工业生产机械化和自动化的步伐。巴雷特机械手就是其中的典型代表,个在运行中能调整自己适应环境并安全的变成各种各样形状的个智能化高度灵活的八轴夹持器。机械手的总体设计方案.机械手的工作原理及系统组成机械手的工作原理机械手主要由执行机构驱动系统控制系统以及位置检测装置等所组成。前苏联自六十年代开始发展应用机械手,至年底,其中半是国产,半是进口。目前,工业机械手大部分还属于第代,主要依靠工人进行控制改进的方向主要是降低成本和提高精度。第二代机械手正在加紧研制。它设有微型电子计算控制系统,具有视觉触觉能力,甚至听想的能力。研究安装各种传感器,把感觉到的信息反馈,是机械手具有感觉机能。第三代机械手则能独立完成工作中过程中的任务。它与电子计算机和电视设备保持联系,并逐步发展成为柔性制造系统和柔性制造单元中的重要环。.气动技术及气动机械手的发展过程气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术,是实现各种生产控制自动控制的重要手段之。大约开始于年,发明能产生个大气压左右压力的空气压缩机。年,人们第次利用气缸做成气动刹车装置,将它成功地用到火车的制动上。世纪年代初,气动技术成功地应用于自动门的开闭及各种机械的辅助动作上。至年代初,大多数气压元件从液压元件改造或演变过来,体积很大。年代,开始构成工业控制系统,自成体系,不再与风动技术相提并论。在年代,由于气动技术与电子技术的结合应用,在自动化控制领域得到广泛的推广。年代进入气动集成化微型化的时代。年代至今,气动技术突破了传统的死区,经历着飞跃性的发展,人们克服了阀的物理尺寸局限,真空技术日趋完美,高精度模块化气动机械手问世,智能气动这概念产生,气动伺服定位技术使气缸高速下实现任意点自动定位,智能阀岛十分理想地解决了整个自动生产线的分散与集中控制问题。气动机械手作为机械手的种,它具有结构简单重量轻动作迅速平稳可靠节能和不污染环境等优点而被广泛应用。气动机械手强调模块化的形式,现代传输技术的气动机械手在控制方面采用了先进的阀岛技术可重复编程等,气动伺服系统可实现任意位置上的精确定位,在执行机构上全部采用模块化的拼装结构。年代初,由布鲁塞尔皇家军事学院•教授领导的综合技术部开发研制的电子气动机器人“阿基里斯”六脚勘探员,是气动技术控制技术和传感技术完美结合产生的“六足动物”。个脚中的每个脚都有个自由度,个直线气缸把脚提起放下,个摆动马达控制脚伸展退回运动,另个摆动马达则负责围绕脚的轴心做旋转之用。由汉诺威大学材料科学研究院设计的气动攀墙机器人,它集遥感技术和真空技术于体,成功地解决了垂直攀缘等视为危险工作的操作问题。自由度,气动式,机械手,设计,毕业设计,全套,图纸摘要随着科技的发展,机械手在工业领域得到越来越广泛的运用,它可以帮助人们完成危险重复的体力劳动,大大提高生产效率。本课题对机械手的手爪手腕手臂腰部和机座部分进行了设计,确定机械手采用圆柱坐标式。手爪的张合,手臂和腰部的伸缩,机座和手腕的旋转都采用气缸驱动。此机械手可以运用于工业流水线上,完成把指定物件从个地方运送至另地方的任务。机械手的系统控制由可编程序控制器完成,按照机械手的动作流程,完成了相应的接线图和程序编制。关键词机械手,工业领域,气缸,可编程序控制设计方案.机械手的工作原理及系统组成.机械手基本形式的选择.驱动机构的选择.机械手详细设计参数.本章小结机械手手部结构设计及计算.手部结构.机械手手爪设计计算.夹紧气缸的设计.手爪夹持范围计算.机械手手爪夹持精度的分析计算.弹簧的设计计算.本章小结腕部的设计计算.腕部设计的基本要求.腕部的结构以及选择.腕部的驱动力矩计算.腕部工作压力的计算.气压缸盖螺钉的计算.动片和输出轴间的连接螺钉.本章小结机械手手臂机构的设计.手臂的设计要求.伸缩气压缸的设计.导向装置.本章小结机械手腰部和基座结构设计及计算.结构设计.控制手臂上下移动的腰部气缸的设计.导向装置.平衡装置.机身回转机构的计算.本章小结机械手的控制系统设计.气压传动系统工作原理图.可编程序控制器的选择及工作过程.可编程序控制器的使用步骤.机械手可编程序控制器控制方案.本章小结结论参考文献致谢绪论计算机技术的不断进步和发展使机器人技术的发展次次达到个