1、以下这些语句存在若干问题,包括语法错误、标点使用不当、语句不通畅及信息不完整——“.....神经元与其它神经元的不同之处是神经元的传输函数为非线性函数,最常用的函数是和函数,有的输出层也采用线性函数。其输出为神经网络般为多层神经网络。网络的信息从输入层流向输出层,因此是种多层前馈神经网络。如果多层网络的输出层采用形传输函数,其输出值将会限制在个较小的范围内,而采用线性传输函数则可以取任意值。在确定网络的结构后,要通过输入和输出样本集对网络进行训练,亦即对网络的阈值和权值进行学习和修正,以使网络实现给定的输入输出映射关系。神经网络的学习过程分为两个阶段第阶段是输入已知学习样本,通过设置的网络结果和前次迭代的权值和阈值,从网络的第层向后计算出各神经元的输出。第二阶段是对权值和阈值进行修改,从最后层向前计算各权值和阈值对总误差的影响,据此对各权值和阈值进行修改。以上两个过程反复交替,直到达到收敛为止。由于误差逐层往回传递,以修正层与层间的权值和阈值,所以称该算法为误差反向传播算法。标准的算法和学习规则样是种梯度下降学习算法,其权值的修正是沿着误差性能函数梯度的反方向进行的。针对标准算法出现了几种基于标准算法的改进算法,如变梯度算法牛顿算法等......”。
2、以下这些语句存在多处问题,具体涉及到语法误用、标点符号运用不当、句子表达不流畅以及信息表述不全面——“.....这些参数均可在计算机显示器上以形象的工艺流程图显示出来,人机界面好。系统还设有手动操作功能,便定期检查时使用。如下工艺流程图图第七章生产目标使用埃肯公司的专有技术和先进的工艺及埃肯公司先进的管理和营销方法,公司将会从事对排放的微硅粉进总成本销售税金及附加营业利润财务状况表单位万元年份年年年年销售收入总资产总负债净利润投资回收期总投资营业利润固定资产折旧年经计算,投资回收期约年零二个月。盈利能力分析三年后的内部收益率为,投资回收期约为年含建设期年。内部收益率经较高,盈利能法定理求得关节力矩,求得关节力矩结果如图。数据较多可在中编程求解。将所得力矩数据与对应肌电信号数据置于同表格中,便于进步处理。图正常行走膝关节力矩本章小结本章建立了人体下肢动力学多刚体模型,直接利用多刚体系统动力学理论进行力学建模,方法简便,是研究人体运动的常用建模方法之。对惯性传感器记录的数据进行处理,利用角动量定理和关节质量质心回归方程,求得关节力矩,并将表面肌电信号关节力矩信号数据整合,为下章表面结电信号的识别做好准备......”。
3、以下这些语句在语言表达上出现了多方面的问题,包括语法错误、标点符号使用不规范、句子结构不够流畅,以及内容阐述不够详尽和全面——“.....求得关节力矩结果如图。数据较多可在中编程求解。将所得力矩数据与对应肌电信号数据置于同表格中,便于进步处理。图正常行走膝关节力矩本章小结本章建立了人体下肢动力学多刚体模型,直接利用多刚体系统动力学理论进行力学建模,方法简便,是研究人体运动的常用建模方法之。对惯性传感器记录的数据进行处理,利用角动量定理和关节质量质心回归方程,求得关节力矩,并将表面肌电信号关节力矩信号数据整合,为下章表面结电信号的识别做好准备。第四章基于神经网络的力矩预测人工神经网络概述神经网络控制属于先进控制技术,是用计算机做数字控制器的类算法。它是世纪年代以来,由于人工神经网络研究所取得的突破性进展,并且与现代控制理论相结合,而发展起来的自动控制领域的前沿学科之。它已成为智能控制的个新分支,为解决复杂的非线性不确知不确定系统的控制问题开辟了新途径。人工神经网络的特点人工神经网络,是在人类对大脑神经网络认识理解的基础上人工构造的能够实现种功能的神经网络。它是理论化的人脑神经网络的数学模型,是模仿大脑神经网络结构和功能而建立的种信息处理系统。它实际上是由大量简单元件相互连接而成的复杂网络......”。
4、以下这些语句该文档存在较明显的语言表达瑕疵,包括语法错误、标点符号使用不规范,句子结构不够顺畅,以及信息传达不充分,需要综合性的修订与完善——“.....主要用于解决信号处理中的自适应和非线性问题。包括自适应均衡自适应滤波回波抵消自适应波束形成和各种非线性问题。虽然神经网络在许多领域都有成功的应用案例,但神经网络也不是尽善尽美的。目前,神经网络的理论研究和实际应用都还在进步的探索之中,相信随着人工神经网络研究的进步深入,其应用领域会更广,用途会更大。神经网络人工神经网络以其具有自学习自组织较好的容错性和优良的非线性逼近能力,受到众多领域学者的关注。在实际应用中,的人工神经网络模型是采用误差反传算法或其变化形式的网络模型简称网络,目前主要应用于函数逼近模式识别分类和数据压缩或数据挖掘,神经网络结构如图所示。线性神经网络的学习算法只能训练单层神经网络,而单层神经网络只能解决线性可分的分类问题。多层神经网络可以用于非线性分类问题,但需要寻找训练多层神经网络的学习算法。图神经网络年提出了个适合多层网络的学习算法,年美国加州的小组将该算法用于神经网络的研究,才使之成为迄今为止最著名的多层网络学习算法算法,由此算法训练的神经网络,称之为神经网络。在人工神经网络的实际应用中......”。
5、以下这些语句存在多种问题,包括语法错误、不规范的标点符号使用、句子结构不够清晰流畅,以及信息传达不够完整详尽——“.....加密装置加密装置是挪威埃肯公司除尘净化系统的核心技术之,该装置的主要功能是对回收微硅粉进行增密。灰仓中的硅微粉象香烟灰样轻,其密度仅为,流动性差,包装运输困难,通过加密装置加密后,硅微粉的密度最高可达,硅粉呈球状颗粒,流动性好,不仅易于包装储存,而且因密度的增加节约了包装和运输费用开支。预除尘器预除尘器也是引进挪威埃肯公司技术经自行改进加工而制成,为柱形筒状结构,其中上半部分又分为主筒和副筒两部分,烟气从上部主筒高速旋流进入,粗大颗粒进入副筒二次旋流沉积收集,被提纯后的烟气经器体下部送至风机入口并以正压方式进入布袋除尘器。预除尘器因其结构上的改进优化,使得烟气中的粗大颗粒祛除的更为彻底,显著提高了硅微粉的品质,从而保证了公司的副产品硅微粉的质量位居同行业之首。先进的计算机控制技术挪威埃肯公司在烟气净化除尘和加密系统中采用了先进的计算机控制技术,该技术是世界上最先进的专有技术之,堪称该领域计算机应用之杰作。整个系统采用计算机加可编程序控制器的方式进行监控,设备运行自动化程度高。计算机全过程监测系统所有设备的运行状况,如系统的压差烟气温度除尘器的正压工作和反吸清洗状态......”。
6、以下这些语句存在多方面的问题亟需改进,具体而言:标点符号运用不当,句子结构条理性不足导致流畅度欠佳,存在语法误用情况,且在内容表述上缺乏完整性。——“.....经济上是可行的,有较强的抗风险能力,是中国工业经济和技术可持续发展真正所需项目。个隔室,每个隔室底部均设有船形储灰仓,含尘烟气从灰仓侧上部装有阀门控制的进风口进入灰仓,并经灰仓上部花板及滤袋进行正压净化过滤,滤后纯净气体透过滤袋排空。由于烟气中的粉尘在滤袋内表面不断的被吸附,导致滤袋阻力逐渐上升,当达到定数值时,滤袋需要清洗,此时灰仓进风口阀门关闭,烟尘停止进入,同时吸风口打开,在反吸风机的作用下,空气从滤袋外侧进入滤袋,滤袋内侧的粉尘在气流的作用下落入灰仓中,实现了滤袋的清洗过程。滤袋清洗工作完成后,烟气进风口阀门重新打开,同时吸风口关闭,完成了个过滤清洗周期。个隔室周而复始的进行,保证了布袋除尘器的正常工作。除尘器所用滤袋为圆柱形,直径米,长米,数量条,是美国戈尔公司在全球独无二的专利产品。该滤袋材质是种经过特殊处理的玻璃纤维,纤维内表面覆有层膨化的聚四氟乙烯薄膜,这层薄膜既可有效的过滤粉尘,又防止了粉尘渗透到纤维中,因此具有良好的气布比,压降仅为普通玻纤袋的三分之,滤袋寿命却是普通玻纤袋的倍,可达年,是种理想的净化过滤材料。电炉烟气经过该滤袋净化过滤后的排放浓度小于......”。
7、以下这些语句存在标点错误、句法不清、语法失误和内容缺失等问题,需改进——“.....神经网络经过训练可有效地提取信号语音图像雷达声纳等感知模式的特征,并能解决现有启发式模式识别系统不能很好解决的不变测量自适应抽象或概括等问题。神经网络可以应用于模式识别的各个环节,如特征提取聚类分析边缘检测信号增强噪声抑制数据压缩等。模式识别是人工神经网络特别适宜求解的类问题,神经网络模式识别技术在各领域中的广泛应用是神经网络技术发展的个重要侧面。人工智能。专家系统是人工智能领域研究时间最长,应用最成功的技术,但人们在应用专家系统解决诸如语音识别图像处理和机器人控制等这类类似于人脑的形象思维的问题时,却遇到很大困难。神经网络为人工智能开辟了条崭新的途径,成为人工智能研究领域中的后起之秀。控制工程。神经网络在诸如机器人运动控制工业生产中的过程控制等复杂控制问题方面有独到之处。较之基于传统数字计算机的离散控制方式,神经网络更适于组成快速实时自适应控制系统。联想记忆。联想记忆的作用是用个不完整或模糊的信息联想出储存在记忆中的个完整清晰的模式来。如何提高模式存贮量和联想质量仍是神经网络的热点之。目前在这方面的应用有内容寻址器人脸识别器知识数据库等。信号处理......”。
8、以下文段存在较多缺陷,具体而言:语法误用情况较多,标点符号使用不规范,影响文本断句理解;句子结构与表达缺乏流畅性,阅读体验受影响——“.....是能够进行复杂的逻辑操作和实现非线性关系的系统。人工神经网络是由人工神经元相互连接组成的网络,它是从微观结构和功能上对人脑的抽象简化,是模拟人类智能的条重要途径,反映了人脑功能的若干基本特征,如并行信息处理学习联想模式分类记忆等。神经网络对控制领域有吸引力的特征能逼近任意范围上的非线性函数。信息的并行分布式处理与储存。便于用超大规模集成电路或光学集成电路系统实现,或用现有的计算机技术实现。可以多输入,多输出。能进行学习,以适应环境的变化。决定神经网络的整体性能的三大要素神经元之间相互连接的形式拓扑结构。神经元信息处理单元的特性。为适应环境而改善性能的学习规则。年建立的第个神经元模型模拟生物神经元模型,为神经网络的研究与发展奠定了基础。至今,已建立了多种神经元与网络的模型,取得了相当的成果,其中些模型被用于自动控制领域。神经网络在控制领域的进展随着人工神经网络技术的发展,其用途日益广泛,应用领域也在不断扩展,已在各工程领域中得到广泛应用。人工神经网络技术可用于如下信息处理工作函数逼近感知觉模拟多目标跟踪联想记忆及数据恢复等。具体而言......”。
9、以下这些语句存在多方面瑕疵,具体表现在:语法结构错误频现,标点符号运用失当,句子表达欠流畅,以及信息阐述不够周全,影响了整体的可读性和准确性——“.....是用计算机做数字控制器的类算法。它是世纪年代以来,由于人工神经网络研究所取得的突破性进展,并且与现代控制理论相结合,而发展起来的自动控制领域的前沿学科之。它已成为智能控制的个新分支,为解决复杂的非线性不确知不确定系统的控制问题开辟了新途径。人工神经网络的特点人工神经网络,是在人类对大脑神经网络认识理解的基础上人工构造的能够实现种功能的神经网络。它是理论化的人脑神经网络的数学模型,是模仿大脑神经网络结构和功能而建立的种信息处理系统。它实际上是由大量简单元件相互连接而成的复杂网络,具有高度的非线性全局作用,是能够进行复杂的逻辑操作和实现非线性关系的系统。人工神经网络是由人工神经元相互连接组成的网络,它是从微观结构和功能上对人脑的抽象简化,是模拟人类智能的条重要途径,反映了人脑功能的若干基本特征,如并行信息处理学习联想模式分类记忆等。神经网络对控制领域有吸引力的特征能逼近任意范围上的非线性函数。信息的并行分布式处理与储存。便于用超大规模集成电路或光学集成电路系统实现,或用现有的计算机技术实现。可以多输入,多输出。能进行学习,以适应环境的变化......”。
1、该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读。
2、有的文档阅读时显示本站(www.woc88.com)水印的,下载后是没有本站水印的(仅在线阅读显示),请放心下载。
3、除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑、修改、打印。
4、有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载。
5、该文档为会员上传,下载所得收益全部归上传者所有,若您对文档版权有异议,可联系客服认领,既往收入全部归您。