帮帮文库

返回

(不等式证明的若干方法毕业论文) (不等式证明的若干方法毕业论文)

格式:word 上传:2022-06-25 14:29:36

《(不等式证明的若干方法毕业论文)》修改意见稿

1、“.....只需要验证命题结论成立的最小的正数就可以了,没有必要验证命题对几个正整数的成立二证明的第二步,就获得了推理的依据,仅仅有第二步没有第步,则失去了递推的基础而只有第步没有第二步,就有可能得出不正确的结论,因为单单靠第步,我们无法递推下去,所以我们无法判断命题对,是否正确在第二步中命题成立,可以作为条件加以应用,时的情况则有待利用命题的已知条件,公理,定理,定义加以证明完成步,二步后最后对命题做个总结例观察下面两个数列,从第几项起始终小于证明你的结论,,,证明当时,有命题成立假设当时命题成立,即有当时,即当时命题成立又可知,,所以从第项起满足始终小于例证明不等式证明当时,上式左边右边,不等式成立假设当时,命题成立,即有,即当时不等式成立,又由可知,不等式对切正整数均成立例设......”

2、“.....,,,时不等式成立假设当时不等式成立,即当时,学习不等式的证明打下了扎实的基础,现在我深深感受到了不等式的证明对我的重要性,所以在此我感谢朱老师对我的指导和关心,相信在以后的学习和实践中我会更加努力,更好地学习好和利用好不等式参考文献肖光基利用已知不等式不等式证明不等式的探讨四川师范大学学报自然科学版年期黄先开曹显兵,等历届考研试题北京世界图书出版公司......”

3、“.....裴礼文数学分析中的典型问题与方法北京高等教育出版社,李长明周焕山初等数学研究北京高等教育出版社成果声明本人郑重声明所提交的毕业论文是在指导老师的指导下独立研究所取得的成果,尽我所知,文中除特别标注和致谢的地方外,学位论文中不包含其他个人或集体已经发表或撰写过的研究成果,对本文的研究成果做出重要贡献的个人和集体,均在文中标明如有侵犯他人著作权的行为,又本人承担责任在此声明签名邓向江日期年月号致谢在论文的准备和写作过程中,要特别感谢朱克超老师对我的指导和督促,同时要感谢他的谅解和包容没有了朱老师就没有我今天的论文,求学历是艰苦的,但又是快乐的我也要感谢我的其他老师和同学们,是他们给予我的帮助让我走过大学的风风雨雨,在那些艰苦的日子里是他们激励我鼓励我,让我奋发图强,在此,我再次衷心感谢他们也谢谢我的父母,没有他们辛苦的付出也就没有我的今天,在这刻,我将最崇高的敬意献给你们我将以更多的努力来回报你们......”

4、“.....在此,向各学界的前辈们致敬,,,即当时,不等式成立综上所述,对所有的,不等式恒成立放缩法在证题过程中,根据不等式的传递性,常采用舍去些正项或负项而使不等式的各项之和变小或变大,或把和或积里的各项换以较大或较小的数,或在分式中扩大或缩小分式中的分子或分母,从而达到证明的目的值得注意的是放缩得当,不要过头常用方法为改变分子分母放缩法拆补放缩法编组放缩法寻找中介量放缩法例求证证明令,,所以例求证证明由得所以原式得证例添加些项或者舍弃些项已知求证证明,......”

5、“.....求证证明,故有所以原试得证例固定部分项,放缩另外的项求证证明,所以原式得证综合法利用些已经证明过的得不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法综合法的思维特点是,又因导果,即由已知条件出发,利用已知的数学定理性质和公式,推出结论的证明方法例已知,同号,求证证明因为,同号,所以,,则即结语通过本文的撰写,使我更多更进步了解了不等式的证明各种证明方法的运用更了解了不等式证明的重要性不等式不仅在我们学习中经常遇到......”

6、“.....我不仅学习了不等式证明的原理各种解不等式的逻辑方法,虽然不等式的证明方法多种多样,要想熟练掌握每种方法有定的难度,但通过本文撰写些常用不等式证明方法后,更好地为我以后进步实根时判别式的取值范围,来证明所要证明的不等式当可以判断方程有没有根以及有几个根,有两个不相等根换元法所谓的换元法就是根据不等式的结构特征,选择适当的代量变换,从而化繁为简,或实现种转化,关健是制造和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化,复杂问题简单化变得容易处理分解法按照定的法则,把个数或式分解为几个数或式,使复杂问题转化为简单易解的基本问题,以便分而治之,各个击破,从而达到证明不等式的目的作商法作商法是当不等式两边为正的乘积形式时,通过作商把其转化为证明左右与的大小即若,,则它的三个步骤作商变形判断与的大小结论迭合法把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立......”

7、“.....使原不等式获证三角代换法借助三角变换,在证题中可使些问题变易常见的三角代换法有若,可设,,可设,,若,可设数学归纳法数学归纳法是种数学证明方法,典型地应用于确定个表达式在所有自然数范围内是成立的或者用于确定个其他形式在个无穷序列是成立的用数学归纳法证明的步骤是,证明当取第个值时,命题成立,第步就获得了递推的基础,但仅靠这步还不能说明结论的普遍性,在第步中,考察结论成立的最小正整数就足够了,没有必要再考察几个正整数,即使命题对几个正整数都成立,也不能保证命题对其他正整数也成立二,假设命题成立,证明当命题也成立,证明了第二步,就获得了递推的依据,但没有第步就失去了递推的基础,只有把第步和第二步结合起来,才能获得普遍性的结论三,下结论,命题对从开始的所有正整数都成立放缩法放缩法就是在证明不等式中,利用不等式的传递性,做适当的放缩或缩小......”

8、“.....应适当好处,同时在放缩时必须时刻注意放缩的跨度,不能放过头,也不能放的不够适度,否则不能达到目的因此,放缩法是个极容易掌握的难点,真正考它的机会不多,掌握放缩法的关键是熟练掌握不等式的基本性质及代数式的变形方法,目的性要明确综合法综合法就是由已知条件或已知不等式出发,通过系列的推出变换,推导出所求的不等式利用综合法由因果证明不等式,即要推揭示出条件与结论之间的因果关系,因此要着力于分析已知与求证之间的差异和联系,不等式两边的差异和联系,再分析不等式左右两端的差异后,合理运用已知条件,进行有效的变换是证明不等式关键不等式证明的常用方法分析法从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就叫分析法所分析的方法是执果导因从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式,它与综合法是对立统的两种方法用分析法证明不等式的逻辑关系是......”

9、“.....要正确使用有关步骤的关键词分析法是证明不等式的直常用方法,当证明不知道如何入手时,这时候运用分析法就有可能获得解决例证明因为和都是正数,所以要证只需证,即证即证即证换元法,若变量在常量附近变化时,可设这变量为该常量加上另个变量,从不等式的结构整体把握,适度进行变量代换,可是问题简单明了例设,求证分析结果分析我们发现,把中的两个互换,不等式不变,说明这是个对称不等式,如果我们令,则原不等式可化为这是个简单而且容易与已知不等式联系的不等式,因而可以按上述换元证明不等式证明令,则,当时,有当时,有否则中必有两个不为正值,不妨设,则,,这与矛盾......”

下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
不等式证明的若干方法毕业论文.doc预览图(1)
1 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(2)
2 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(3)
3 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(4)
4 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(5)
5 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(6)
6 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(7)
7 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(8)
8 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(9)
9 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(10)
10 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(11)
11 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(12)
12 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(13)
13 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(14)
14 页 / 共 20
不等式证明的若干方法毕业论文.doc预览图(15)
15 页 / 共 20
预览结束,还剩 5 页未读
阅读全文需用电脑访问
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为word文档,建议你点击DOC查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档