1、“.....。方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。关于状态估计问题,我们要估计,因为它包含所有的系统信息。问题是,我们不能直接很好地描为测量。相反,我们测量的是的和测量噪声的个函数。我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。举个例子,假设我们的系统是辆坦克,移动机器人汽车或其他可沿直线运动的些交通工具。我们可以这样说,系统的状态由车辆位置和速度表示。输入是加速度和输出为测量位置。让我们进步假设我们能够测量每秒的位置。该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。最后。是等于测量噪声的个标量也可以说是仪表误差。现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。我们仅能使用作为我们的位置,但是是噪声......”。
2、“.....这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程。在卡尔曼滤波方程里有意义的变量是的估计值叫做卡尔曼增益这是个矩阵也称为估计误差的协方差也是个矩阵是过程噪声的协方差,是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态。我们也开始需要个代表着我们在初始状态估计的不确定性的初始估计误差协方差。如果我们非常有信心在我们的初始估计,则应该是比较小的。如果我们是非常不确定我们的初始估计并则应会很大。从长远来讲,这些初始化值不会让不同的滤波器的性能有多大不同。线性局限性好的,那么卡尔曼滤波是种线性滤波器,可以应用于线性系统。不幸的是,线性系统并不真正存在所有系统最终是非线性的。即使是简单的关系的欧姆定律也只是个在有限范围内的近似值。如果电阻器的电压超过定数值时,欧姆定律就不适用了......”。
3、“.....当输入电压很小时两者之间的关系近似是条直线,但如果功率耗散电阻超过定的值时候,两者的关系变得十分的非线性。即使是个装置简单的电阻是近似线性,之后也只在有限范围内操作。这说明了个事实线性系统不存在这个真实的世界。所以我们看到,线性系统并不真正存在。然而,许多系统能够接近线性系统例如,标准的卡尔曼滤波器给出良好的好的结果。但到目前为止只能用到足够近。最终我们会碰到个系统,连较小范围的操作都不能形成好的线性状态,并且标准卡尔曼滤波不再给予良好的结果。在这些情况下,我们会需要去探索非线性滤波。非线性滤波可以是困难和复杂的,这当然是不能理解为线性滤波。然而,些非线性估计方法已经或即将很普遍。这些包括非线性的扩展卡尔曼滤波器,无迹的卡尔曼滤波器,在我的书里也有介绍见额外阅读本文末尾处。在这篇文章我将会谈论的是两个最基本的非线性的扩展卡尔曼滤波。标准的卡尔曼滤波我刚总结并不直接适用于非线性系统。然而,如果我们想把非线性系统变换为线性系统,我们可以利用线性估计方法来估计系统状态。为了难点非线性系统,我们将使用个数学工具叫泰勒级数展开......”。
4、“.....泰勒级数展开的种非线性函数可以写成,在方程中是的第个衍生式,该方程看起来很复杂,但方程真的是很简单。让我们来看个例子。假设我们想拓展在点泰勒级数在。记住,衍生的是,而派生出来的是。那意味着我们可以写出的泰勒级数展开是因为我们正在点上处展开,我们看到,。的泰勒级数展开等于如果我们使用二阶泰勒级数展开的,我们可以这样说,因为大约等于。这就是所谓的二次,因为它是的二次方项。换句话说,我们可以忽略其余在泰勒级数中的高次方项。这是因为在泰勒级数中,的次方愈大它所代表的值的影响就越小。试试自己把用二阶泰勒级数展开。表显示及其二阶泰勒级数展开的各个的值。我们看到当越小也就是,当我逐渐接近名义点时,泰勒级数展开可以让我们更好地逼近的真正值。换句话说,阶泰勒级数展开的个函数是相当于图显示函数连同它在点时的阶泰勒级数展开。当的值很小时图上的这两条线是相当接近的,表明了泰勒级数的展开很好的近似于。但是当越大而这两条线分开。所以对大值的,是种不好的泰勒级数展开近似。生活在现实我们看过了卡尔曼滤波器可改装为在非线性系统的状态估计......”。
5、“.....我觉得它很有趣,在世纪年代的在美国国家航空和宇宙航行局的太空计划的航天器导航中第次应用卡尔曼滤波的线性系统并不是非线性系统。卡尔曼滤波器的使用是源自斯坦利施密特在背后的驱动。最早是在五十年代和六十年代初,美国国家航空和宇宙航行局开始时的登月任务的可行性研究时,施密特是国航空暨太空总署艾米斯动态分析分支的酋长。,卡尔曼和施密特共同开发这,理论,卡尔施密特需要个导航算法。非线性卡尔曼滤波使施密特发挥了重要的作用,在世纪年代初,卡尔曼滤波器常常被称为卡尔曼施密特过滤器。使用个算法的关键是能够代表系统数学模型。那是,卡尔曼滤波器设计人员需要了解系统,够得上能够描述其行为与微分方程组。在实践中,这往往是最困难的部分的实现方法,利用卡尔曼滤波器在卡尔曼滤波的另个挑战是能够精确模拟系统噪音。在我们推导卡尔曼滤波器时,我们使用了个阶泰勒级数逼近非线性系统方程。如果我们使用二阶泰勒级数近似方程式我们会有个更精确的逼近我们的非线性方程组。这是个例子,所谓的高阶的方法对非线性滤波。如果系统非线性尤其严重,高阶的方法也许能给更好的结果......”。
6、“.....动作后自锁报警停机。其他料仓堵塞信号纵向撕裂信号及拉紧制动信号测温信号等,可根据需要进行选择。第六章总结带式输送机是最常用的固体物料的连续输送机,广泛应用于国民经济的各行各业中。本设计的内容包括带式输送机的应用分类发展状况工作原理结构布置方式及运行阻力带式输送机的主要零部件如滚筒等的常规设计计算和主要零部件的强度校核,主要包括传动功率和输送带张力的计算和校核驱动装置的选用输送机部件的选用,主要有输送带传动滚筒托辊制动装置该向装置拉紧装置等。本设计以经典的基本理论和设计方法为基础,充分吸收参考书中的基本理论及设计方法收集了具有代表性的设计用图和设计用表。本设计基本上达到了设计目的。通过本次设计,我的知识领域得到进步扩展,专业技能得到进步提高,同时增强了分析和解决工程实际的综合能力。另外,也培养了自己严肃认真的科学态度和严谨求实的工作作风。由于时间有限加上实际条件的限制,本设计不能进行调试,这也是不足之处。当然,设计中肯定还有其他不足和纸漏之处请各位老师指正。致谢本次设计由曾老师的指导,曾老师严谨的治学态度深厚的知识积累和谦逊热情的做人风格使我深受熏陶......”。
7、“.....在设计过程中曾多次得到曾老师的耐心辅导,另外在设计过程中班上的同学们了很多帮助,特别是在计算机的使用方面给于了很多帮助,并提出了许多宝贵建议本次毕业设计的顺利完成离不开以上各位老师指导,以及同学们的大力帮助,借此只言片语,对他们热心而无私的帮助表示衷心的感谢,参考文献程居山矿山机械徐州中国矿业大学出版社机械设计手册编写组机械设计手册化学工业出版社方慎权煤矿机械徐州中国矿业学院出版社潘英通用机械设计徐州中国矿业大学出版社孔庆华,刘传绍极限测量与测试技术基础同济大学出版社唐大放,冯晓宁杨现卿机械设计工程学徐州中国矿业大学出版社机械电子工业部编机械产品目录机械工业出版社中国纺织大学工程图学教研室画法几何及工程制图上海科技出版社焦作矿业学院,煤矿机械传动设计,煤炭工业出版社候志学,矿山运输机械,冶金工业出版社纪名贵,机械设计,高等教育出版社,。胶合金清扫器清扫板金属连板缓冲器调整杆调整螺栓支架轴杆它由清扫板,金属连板,橡胶缓冲器,调整杆,调节螺栓,支架及轴杆组成。当调节调整螺栓时,使调整杆逆时针旋转,通过轴杆带动清扫板转动并紧贴在输送带上产生定的压力......”。
8、“.....减少对输送带的磨损,提高了输送带的使用寿命。清扫板上镶有耐磨硬质合金,寿命长。清扫器是由数块清扫板组成,如若输送带表面局部黏附的黏结物没被清扫掉时,清扫板跳动不影响其他清扫板工作。橡胶清扫器有型和型两种,可以分别安装在输送机的不同位置上构成复式清扫装置,所以清扫效果好。对于长距离的带式输送机,近年来出现了输送带翻转清扫法。输送带无载分支在离开头部滚筒后旋转,在进入尾部滚筒之前再往回旋转,恢复原状。采取输送带翻转清扫法能避免弄脏托辊和沿输送机线路撤落黏结物,减轻输送带和托辊的磨损,使下托辊的,。方程和有几个变量都是矩阵是时间指标称为系统的状态个已知的系统输入或称为控制信号是测量输出是过程噪声和是测量噪声除了时间指标,每个变量总的来说都是矢量,因此含有更多的不止个元素。关于状态估计问题,我们要估计,因为它包含所有的系统信息。问题是,我们不能直接很好地描为测量。相反,我们测量的是的和测量噪声的个函数。我们可以利用来帮助我们获得的估计,但是我们不能必然的从上获得这些表面信息,因为它受到噪音的影响。举个例子,假设我们的系统是辆坦克,移动机器人汽车或其他可沿直线运动的些交通工具......”。
9、“.....系统的状态由车辆位置和速度表示。输入是加速度和输出为测量位置。让我们进步假设我们能够测量每秒的位置。该系是个在时刻上包含车辆位置和速度的矢量,而是个等于加速度的标量,是个等于实测位置的标量。是个由于凹坑产生的过程噪声矢量,我们对知识的不确定性和其他未建模效果。最后。是等于测量噪声的个标量也可以说是仪表误差。现在,假设我们想要控制车辆跟踪个特定的路径,或者由于其他些原因我们要估计车辆的位置。我们仅能使用作为我们的位置,但是是噪声。我们本可以通过使用卡尔曼滤波做得更好。这是因为个卡尔曼滤波算法不仅测量位置,而且有包含信息的状态方程。卡尔曼滤波器方程可以这样写在时间步长时,卡尔曼滤波器的被称为个线性滤波器因为这些方程不含指数函数,三角函数,都是能使用直线来绘制的各种图形表达方程。在卡尔曼滤波方程里有意义的变量是的估计值叫做卡尔曼增益这是个矩阵也称为估计误差的协方差也是个矩阵是过程噪声的协方差,是测量噪声的协方差另外的两个矩阵上标表示矩阵的逆阵上标表示矩阵的转置是恒等矩阵为了初始化个卡尔曼滤波器,我们开始需要估计在最初的时间的状态......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。