1、“.....时,函数单调递增,此时由不等式,解得若函数在区间,∞上为增函数,则实数的取值范围为答案,当时,即在,∞上单调递增,设函数是区间,上的减函数,则实数的取值范围是答案∈解析由题意得,即,解得∈,是区间,上的减函数,,⊆∈定义在上的函数满足恒成立,若,所以单调递增,当,为增函数又,且,因此有,即有,函数的单调递减区间为答案,解析函数的定义域是,∞,且,令,解得当时,在∞,上为减函数函数的单调递减区间为∞,已知函数,其中∈,且曲线在点,处的切线垂直于直线求的值求函数的单调区间解对求导得,由在点,处的切线垂直于直线知,解得由知,则令,解得或因为不在的定义域,∞内,故舍去当∈,时故在,∞内为增函数综上,的单调增区间为,∞,单调减区间为,已知函数,若与在处相切,求的表达式若在,∞上是减函数,求实数的取值范围解由已知得又在,∞上是减函数在,∞上恒成立即在,∞上恒成立,则,∈,∞,∈,∞故实数的取值范围是∞......”。
2、“.....上单调递减,则实数的取值范围是答案,当时,有且,解得,≠分别是定义在上的奇函数和偶函数,当时,且,则的解集为答案,∪,∞解析是奇函数,当时,,则即的单调递增区间为,和,题型二含参数的函数的单调性例已知函数当时,求曲线在点,处的切线方程当时,讨论的单调性解当时此时,又因为,所以切线方程为,整理得当时,此时,在,上单调递增当,此时在,或,∞上单调递增综上,当时,在,上单调递减,在,∞上单调递增当,故在,∞上单调递增当时,故在,∞上单调递减当时,令,解得,则当∈,时,当∈,∞时,故在,上单调递减,在,∞上单调递增题型三利用函数单调性求参数例设函数,曲线在点,处的切线方程为求,的值若,求函数的单调区间设函数,且在区间,内存在单调递减区间,求实数的取值范围解,由题意得,,即,由得,当∈∞,时,当∈,时,所以函数的单调递增区间为∞,∞,单调递减区间为......”。
3、“.....不正确的项是耶律楚材很小就失去了父亲,长大后博览群书,精通天文,地理,律历,医卜等,颇有才华。元太祖及其继任者对耶律楚材都十分赏识,耶律楚材得到俸禄以后都能与亲族分享,却重来没有徇私情让他们做官。太宗皇帝即位,但是直由皇后掌握朝政大,则,在时恒成立即,在时恒成立所以,在时恒成立令,则在,∞上是单调函数,求实数的取值范围解由,得由知若函数单调递增,则若函数单调递减,则来求解已知函数∈若在点,处的切线与直线垂直,求的值若数的取值范围是,思维升华已知函数单调性,求参数范围的两个方法利用集合间的包含关系处理在,上单调,则区间,是相应单调区间的子集转化为不等式的恒成立问题即在,上恒成立,又的值域为的范围是,∞,函数在,上单调时,的取值范围是∞,∪,∞,故在,上不单调......”。
4、“.....上不单调,求的取值范围解由引申探究知在,上为减函数,的范围是∞若在,上为增函数,可知又调,则区间,是相应单调区间的子集转化为不等式的恒成立问题即在,上恒成立,又的值域为的范围是,∞,函数在,上单调时,的取值范围是∞,∪,∞,故在,上不单调,实的两个根即若在,上不单调,求的取值范围解由引申探究知在,上为减函数,的范围是∞若在,上为增函数,可知又,∈,的值域为,实数的取值范围是∞,若的单调减区间为求的值解的单调减区间为,是又,∈,的值域为,实数的取值范围是∞,若的单调减区间为求的值解的单调减区间为,是的两个根即若在,上不单调,求的取值范围解由引申探究知在,上为减函数,的范围是∞若在,上为增函数,可知在,上恒成立,又的值域为的范围是,∞,函数在,上单调时,的取值范围是∞,∪,∞,故在,上不单调,实数的取值范围是,思维升华已知函数单调性,求参数范围的两个方法利用集合间的包含关系处理在,上单调,则区间,是相应单调区间的子集转化为不等式的恒成立问题即若函数单调递增,则若函数单调递减......”。
5、“.....处的切线与直线垂直,求的值若在,∞上是单调函数,求实数的取值范围解由,得由知,若为单调递减函数,则,在时恒成立即,在时恒成立所以,在时恒成立令,则,由,得由时恒成立,即,在时恒成立,所以,在时恒成立,由上述推理可知此时故实数的取值范围是∞,分类讨论思想研究函数的单调性典例分已知函数其中函数的图象在点,处的切线平行于轴确定与的关系若,试讨论函数的单调性思维点拨依据的切线条件可得得,关系,代后消去,对进行分类讨论确定的符号规范解答解依题意得,则分由函数的图象在点,处的切线平行于轴得,分由得函数的定义域为,∞,当时,由,得,分当时,令,得或,分若,由,得或,即,得或时,函数在,上单调递增,在,上单调递减,在,∞上单调递增分温馨提醒含参数的函数的单调性问题般要分类讨论,常见的分类讨论标准有以下几种可能方程是否有根若有根,求出根后是否在定义域内若根在定义域内且有两个,比较根的大小是常见的分类方法本题求解先分或两种情况,再比较和的大小方法与技巧已知函数解析式求单调区间......”。
6、“.....以致朝纲混乱。耶律楚材敢于忠言抗辩,让皇后对其颇为忌惮。耶律楚材最后死在任上,他生为官清廉,虽然多年担任朝廷的要职,但死后只留下他喜欢的书画等而没有什么财产。把文中画横线的句子翻译成现代汉语。分丙戌冬,从下灵武,诸将争取子女金帛,楚材独收遗书及大黄药材。如今写手好字已经很少令人惊叹,也失去了以此能够找到更好的工作和找更好的对象的功用。政府不能要求人们在切场合使用手写,所以无纸化自动办公比手写汉字更加高效,也更低碳。只有让能写手好字重新成为实用追求,让手书汉字不仅成为项技能,更加成为种普遍认同的美的享受,才能阻止提笔忘字现象的继续恶化。下列表述,与原文意思不符的项是美国媒体率先报道了中国存在提笔忘字的现象,这报道引起了国内媒体的纷纷报道和评论。汉字字形和书写汉字中寄托了中国文化精髓,这是汉字区别于其他文字的地方,也是台湾地区力主要把繁体汉字申报为世界遗产的原因之。在现代化发展中,用键盘输入替代汉字手写是必然选择,但淡忘了汉字书写却表现出传统文化的衰退......”。
7、“.....正如木兰秋闱无法保持军队战斗力。二古诗文阅读来源学科网文言文阅读分阅读下面的文言文,完成下题。耶律楚材,字晋卿,父履,以学行事金世宗,特见亲任,终尚书右丞。楚材生三岁而孤,母杨氏教之学。及长,博极群书,旁通天文地理律历术数及释老医卜之说,下笔为文,若宿构者。太祖定燕,闻其名,召见之。楚材身长八尺,美髯宏声。帝伟之,曰辽金世仇,朕为汝雪之。对曰臣父祖尝委质事之,既为之臣,敢仇君耶,帝重其言,处之左右。帝每征讨,必命楚材卜,帝亦自灼羊胛,以相符应。丙戌冬,从下灵武,诸将争取子女金帛,楚材独收遗书及大黄药材。既而士卒病疫,得大黄辄愈。指楚材谓太宗曰此人,天赐我家,尔后军国庶政,当悉委之。太宗即位。壬辰春,帝南征,将涉河,诏逃难之民,来降者免死。或曰此辈急则降,缓则走,徒以资敌,不可宥。楚材请制旗数百,以给降民,使归田里,全活甚众。又请遣人入城求孔子后得五十代孙元措奏袭封衍圣公付以林庙地。又率大臣子孙,执经解义,俾知圣人之道。置编修所于燕京经籍所于平阳,由是文治兴焉。丙申春......”。
8、“.....帝亲执觞赐楚材曰朕之所以推诚任卿者,先帝之命也。非卿,则中原无今日。朕所以得安枕者,卿之力也。楚材当国日久,得禄分其亲族,未尝私以官。行省刘敏从容言之,楚材曰睦亲之义,但当资以金帛。若使从政而违法,吾不能徇私恩也赏析诗中写景的句子。分最后四句意蕴丰富,请简析其中蕴含着诗人怎样的感情。分三默写补写出下列句。畴昔叹时迟,晚节悲年促。岁暮怀百忧,将从季主卜。注季主,即司马季主,他是汉初长安著名的卜者。史记•日者列传记载宋忠和贾谊曾问他何居之卑何行之污他,时,函数单调递增,此时由不等式,解得若函数在区间,∞上为增函数,则实数的取值范围为答案,当时,即在,∞上单调递增,设函数是区间,上的减函数,则实数的取值范围是答案∈解析由题意得,即,解得∈,是区间,上的减函数,,⊆∈定义在上的函数满足恒成立,若,所以单调递增,当,为增函数又,且,因此有,即有,函数的单调递减区间为答案,解析函数的定义域是,∞,且,令,解得当时,在∞......”。
9、“.....已知函数,其中∈,且曲线在点,处的切线垂直于直线求的值求函数的单调区间解对求导得,由在点,处的切线垂直于直线知,解得由知,则令,解得或因为不在的定义域,∞内,故舍去当∈,时故在,∞内为增函数综上,的单调增区间为,∞,单调减区间为,已知函数,若与在处相切,求的表达式若在,∞上是减函数,求实数的取值范围解由已知得又在,∞上是减函数在,∞上恒成立即在,∞上恒成立,则,∈,∞,∈,∞故实数的取值范围是∞,组专项能力提升时间分钟设函数在区间,上单调递减,则实数的取值范围是答案,当时,有且,解得,≠分别是定义在上的奇函数和偶函数,当时,且,则的解集为答案,∪,∞解析是奇函数,当时,,则即的单调递增区间为,和,题型二含参数的函数的单调性例已知函数当时,求曲线在点,处的切线方程当时,讨论的单调性解当时此时,又因为,所以切线方程为,整理得当时,此时,在,上单调递增当,此时在,或,∞上单调递增综上......”。
1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。
2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。
3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。