帮帮文库

返回

TOP30高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt文档免费在线阅读 TOP30高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt文档免费在线阅读

格式:PPT 上传:2025-10-31 18:09:11
其中,正确的有个个个个解析由空集的性质可知,只有正确,均不正确答案已知是菱形,是正方形,是平行四边形,那么之间的关系是⊆⊆⊆⊆⊆⊆解析集合关系如图答案已知集合,若⊆,则实数解析⊆,,答案集合且的真子集的个数为解析由题意得,故集合有个真子集答案“课时达标检测”见“课时跟踪检测三”已知集合,若是的真子集,求的取值范围若是的子集,求的取值范围若,求的取值范围解若是的真子集,即,故若是的子集,即⊆,则若,则必有第章突破常考题型题型理解教材新知知识点知识点二题型二题型三跨越高分障碍应用落实体验随堂即时演练课时达标检测知识点三集合集合间的基本关系知识点四集合间的基类题通法公式法求有限集合的子集个数含个元素的集合有个子集含个元素的集合有个真子集含个元素的集合有个非空子集含有个元素的集合有个非空真子集若集中的至少个,因此依据集合的元素个数分类如下含有三个元素含有四个元素含有五个元素故满足题意的集合共有个答案的取值范围解当∅时,只需,即当∅时,根据题意作出如图所示的数轴,可得由题意可得,⊆,可以确定集合必含有元素且含有元素集合中含有个元素集合中含有个元素故满足题意的集合共有个答案集合间关系的应用例已知集合若⊆,求实数”,则这样的集合共有个解析由“若,则”知和为的两个数都是集合中的元素,则集合中含有个元素集合中含有个元素集合中含有个元素含有个元素的集合有个非空真子集若集合有个元素,集合有个元素,且⊆⊆,则符合条件的集合有个活学活用非空集合⊆且满足“若,则,故满足题意的集合共有个答案类题通法公式法求有限集合的子集个数含个元素的集合有个子集含个元素的集合有个真子集含个元素的集合有个非空子集可以确定集合必含有元素且含有元素中的至少个,因此依据集合的元素个数分类如下含有三个元素含有四个元素含有五个元素,析集合的真子集所含有的元素的个数可以有个,个或个,含有个为∅,含有个有个真子集,含有个元素有个真子集和共有个真子集,故选由题意可得,⊆故易得,其对应的图如选项所示答案有限集合子集的确定例集合的真子集个数是满足,⊆的集合有个解示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍活学活用能正确表示集合和集合关系的图是解析解得或集合,若是,则⊆,否则不是的子集其次,判断另个集合中的任意元素是否属于第个集合,若是,则⊆,否则不是的子集若既有⊆,又有⊆,则数形结合判断对于不等式表含有元素,而集合不含元素,故法二由列举法知„,„,所以类题通法判断集合间关系的方法用定义判断首先,判断个集合中的任意元素是否属于另代表元素是数,集合的代表元素是有序实数对,故与之间无包含关系等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故法两个集合都表示正奇数组成的集合,但由于,因此集合含有两个元素与的集合,而,是以有序数组,为元素的单元素集合,所以,与,不相等对于,与是“属于与否”的关系,所以故是正确的,应选答案解集合的对于,实际为同集合,任何个集合是它本身的子集对于,空集是任何集合的子集对于,是含有单元素的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅对于是是等边三角形,是等腰三角形,解析对于,是集合与集合的关系,应为是等边三角形,是等腰三角形,解析对于,是集合与集合的关系,应为对于,实际为同集合,任何个集合是它本身的子集对于,空集是任何集合的子集对于,是含有单元素的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅对于是含有两个元素与的集合,而,是以有序数组,为元素的单元素集合,所以,与,不相等对于,与是“属于与否”的关系,所以故是正确的,应选答案解集合的代表元素是数,集合的代表元素是有序实数对,故与之间无包含关系等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故法两个集合都表示正奇数组成的集合,但由于,因此集合含有元素,而集合不含元素,故法二由列举法知„,„,所以类题通法判断集合间关系的方法用定义判断首先,判断个集合中的任意元素是否属于另集合,若是,则⊆,否则不是的子集其次,判断另个集合中的任意元素是否属于第个集合,若是,则⊆,否则不是的子集若既有⊆,又有⊆,则数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍活学活用能正确表示集合和集合关系的图是解析解得或,故易得,其对应的图如选项所示答案有限集合子集的确定例集合的真子集个数是满足,⊆的集合有个解析集合的真子集所含有的元素的个数可以有个,个或个,含有个为∅,含有个有个真子集,含有个元素有个真子集和共有个真子集,故选由题意可得,⊆,可以确定集合必含有元素且含有元素中的至少个,因此依据集合的元素个数分类如下含有三个元素含有四个元素含有五个元素故满足题意的集合共有个答案类题通法公式法求有限集合的子集个数含个元素的集合有个子集含个元素的集合有个真子集含个元素的集合有个非空子集含有个元素的集合有个非空真子集若集合有个元素,集合有个元素,且⊆⊆,则符合条件的集合有个活学活用非空集合⊆且满足“若,则”,则这样的集合共有个解析由“若,则”知和为的两个数都是集合中的元素,则集合中含有个元素集合中含有个元素集合中含有个元素集合中含有个元素集合中含有个元素故满足题意的集合共有个答案集合间关系的应用例已知集合若⊆,求实数的取值范围解当∅时,只需,即当∅时,根据题意作出如图所示的数轴,可得由题意可得,⊆,可以确定集合必含有元素且含有元素中的至少个,因此依据集合的元素个数分类如下含有三个元素含有四个元素含有五个元素故满足题意的集合共有个答案类题通法公式法求有限集合的子集个数含个元素的集合有个子集含个元素的集合有个真子集含个元素的集合有个非空子集含有个元素的集合有个非空真子集若集合有个元素,集合有个元素,且⊆⊆,则符合条件的集合有个活学活用非空集合⊆且满足“若,则”,则这样的集合共有个解析由“若,则”知和为的两个数都是集合中的元素,则集合中含有个元素集合中含有个元素集合中含有个元素集合中含有个元素集合中含有个元素故满足题意的集合共有个答案集合间关系的应用例已知集合若⊆,求实数的取值范围解当∅时,只需,即当∅时,根据题意作出如图所示的数轴,可得解得类题通法利用集合关系求参数应关注三点分析集合关系时,首先要分析简化每个集合此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误般含用实心点表示,不含用空心点表示此类问题还要注意“空集”的情况,因为空集是任何集合的子集活学活用已知集合时,又且⊆,如图作出满足题意的数轴,当时,⊆,如图所示,,综上所述,的取值范围是或或利用集合的包含关系求参数典例已知集合若⊆,求实数的取值范围解⊆,,解得,故的取值范围是多维探究本例中,若⊆,求实数的取值范围解当∅时,即当∅时,,,即∅故实数的取值范围是在本例中,若将“⊆”改为“”,求实数的取值范围解,两不等式端点不可能同时成立,故答案与本例致若将本例中的不等式变为方程,试解决如下问题已知集合,若⊆,求实数的取值范围解⊆,∅或或或,当∅时,方程无实根,则,即当时,有当时,有无解当,时,由韦达定理得综上所述,或随堂即时演练给出下列四个判断∅空集没有子集任何个集合必有两个或两个以上的子集空集是任何个集合的子集其中,正确的有个个个个解析由空集的性质可知,只有正确,均不正确答案已知是菱形,是正方形,是平行四边形,那么之间的关系是⊆⊆⊆⊆⊆⊆解析集合关系如图答案已知集合,若⊆,则实数解析⊆,,答案集合且的真子集的个数为解析由题意得,故集合有个真子集答案“课时达标检测”见“课时跟踪检测三”已知集合,若是的真子集,求的取值范围若是的子集,求的取值范围若,求的取值范围解若是的真子集,即,故若是的子集,即⊆,则若,则必有第章突破常考题型题型理解教材新知知识点知识点二题型二题型三跨越高分障碍应用落实体验随堂即时演练课时达标检测知识点三集合集合间的基本关系知识点四集合间的基本关系子集提出问题具有北京市东城区户口的人组成集合,具有北京市户口的人组成集合问题中元素与集合有关系吗提示有关系,中每个元素都属于问题集合与集合有什么关系提示集合包含集合导入新知子集的概念定义般地,对于两个集合如果集合中元素都是集合中的元素,我们就说这两个集合有关系,称集合为集合的子集记法与读法记作或,读作“含于”或“包含”任意个包含⊆⊇图示结论任何个集合是它本身的子集,即对于集合,若⊆,且⊆,则⊆⊆化解疑难对子集概念的理解集合是集合的子集的含义是集合中的任何个元素都是集合中的元素,即由能推出例如,⊆,则如果集合中存在着不是集合的元素,那么集合不包含于,或不包含此时记作 ⃘或⊉注意符号“”与“⊆”的区别“⊆”只用于集合与集合之间,如⊆而不能写成,“”只能用于元素与集合之间如,而不能写成⊆集合相等提出问题设是有三条边相等的三角形,是等边三角形问题三边相等的三角形是何三角形提示等边三角形问题两集合中的元素相同吗提示相同问题是的子集吗是的子集吗提示是,是导入新知集合相等的概念如果集合是集合的⊆,且集合是集合的⊆,此时,集合与集合中的元素是样的,因此,集合与集合相等,记作子集子集化解疑难对两集合相等的认识若⊆,又⊆,则反之,如果,则⊆,且⊆这就给出了证明两个集合相等的方法,即欲证,只需证⊆与⊆同时成立即可若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关真子集提出问题给出下列集合,问题集合与集合有什么关系提示⊆问题集合中的元素与集合有什么关系提示集合中的元素都在中,但元素,不在中导入新知真子集的概念定义如果集合⊆,但存在元素,且,我们称集合是集合的真子集记法记作或∉图示结论且,则⊆且,则化解疑难对真子集概念的理解在真子集的定义中,首先要满足⊆,其次至少有个,但∉若不是的子集,则定不是的真子集空集提出问题个月有天的月份组成集合问题含有天的月份存在吗提示不存在问题集合存在吗是什么集合提示存在,是空集导入新知空集的概念定义我们把的集合,叫做空集记法∅规定空集是任何集合的,即∅⊆特性空集只有个子集,即它的本身,∅⊆∅∅,则∅不含任何元素子集化解疑难∅与的区别∅是不含任何元素的集合是含有个元素的集合,∅集合间关系的判断例下列各式中,正确的个数是⊆∅⊆∅指出下列各组集合之间的关系是等边三角形,是等腰三角形,解析对于,是集合与集合的关系,应为对于,实际为同集合,任何个集合是它本身的子集对于
下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(1)
1 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(2)
2 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(3)
3 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(4)
4 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(5)
5 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(6)
6 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(7)
7 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(8)
8 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(9)
9 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(10)
10 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(11)
11 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(12)
12 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(13)
13 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(14)
14 页 / 共 44
高中数学 1.1.2集合间的基本关系课件 新人教A版必修1(2).ppt预览图(15)
15 页 / 共 44
预览结束,还剩 29 页未读
阅读全文需用电脑访问
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为PPT文档,建议你点击PPT查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档