1、“.....要求汽车以.的减速度制动时,车身前俯角不大于.。制动性参数目前常用制动距离平均制动减速度和行车制动的踏板力及应急制动时的操纵力来评价制动效能。对于总质量小于.的轻型货车,当时,总制动距离应小于等于,制动减速度应大于等于.,操纵力小于。舒适型参数舒适性应包括平顺性空气调节性能车内噪声乘坐环境及驾驶员的操作性能。其中汽车行驶平顺性常用垂直振动参数作评价,包括频率和振动加速度等,此外悬架动挠度也用来作为评价参数之。对于货车,静挠度,动挠度,偏频。.发动机的选择发动机形式的选择选为直列水冷汽油发动机。汽油机的优点平稳噪声小转速高体积小易启动转矩适应性好等。直列式的优点结构简单维修方便造价低廉工作可靠宽度小易布置,因而在中型及以下的货车上得到广泛应用。水冷的优点冷却均匀可靠散热好噪声小能提供车内供暖较好适应发动机增压和散热的需要。发动机主要性能指标的选择发动机最大功率和相应转速根据所设计汽车应达到的最高车速,用下式估算发动机最大功率.式中发动机最大功率在汽车行驶过程中,桥壳承受繁重的载荷......”。
2、“.....为了减小汽车的簧下质量以利于降低动载荷提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量.桥壳还应结构简单制造方便以利于降低成本。其结构还应保证主减速器的拆装调整维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型使用要求制造条件材料供应等。桥壳的结构型式大致分为可分式桥壳可分式桥壳的整个桥壳由个垂直接合面分为左右两部分,每部分均由个铸件壳体和个压入其外端的半轴套管组成。半轴套管与壳体用铆钉联接。在装配主减速器及差速器后左右两半桥壳是通过在中央接合面处的圈螺栓联成个整体。其特点是桥壳制造工艺简单主减速器轴承支承刚度好。整体式桥壳整体式桥壳的特点是将整个桥壳制成个整体,桥壳犹如整体的空心粱,其强度及刚度都比较好。且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好以后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在起使主减速器和差速器的拆装调整维修保养等都十分方便。组合式桥壳将主减速器壳作为桥壳中间部分,而在其两端压入无缝钢管......”。
3、“.....组合式桥壳同样具有可分式桥壳所具有的轴承座刚度好的优点,同时由于其后端有可拆装的后盖,主减速器及差速器均由后盖孔处装入,因此使拆装调整主减速器及差速器比可分式桥壳方便。与整体式桥壳相比,组合式桥壳较小,故桥壳质量小,另外组合式桥壳对加工精度要求较高,整个桥壳的刚度比整体式差。.本章小结具体形式的确定需要非常全面的考虑,才会做到效率最高最经济,因此在很多布置方面得多进行些必要的实例,到工厂和实验室把每个步骤亲身体验才会做出更好的选择。第章驱动桥的设计计算.主减速器的设计与计算驱动桥的设计计算主要包括主减速器差速器半轴和桥壳个部分的设计,计算和校核。主减速比的确定主减速比对主减速器的结构型式轮廓尺寸质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。的选择应在汽车总体设计时和传动系的总传动比起由整车动力计算来确定。可利用在不同下的功率平衡田来研究对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择值,可使汽车获得最佳的动力性和燃料经济性......”。
4、“.....在给定发动机最大功率及其转速的情况下,所选择的值应能保证这些汽车有尽可能高的最高车速。这时值应按下式来确定.式中车轮的滚动半径,.变速器最高档传动比,对于其他汽车来说,为了得到足够的功率储备而使最高车速稍有下降,般选择比上式求得的大,即按下式选择.式中分动器或加力器的高档传动比轮边减速器的传动比。根据所选定的主减速比值,就可基本上确定主减速器的减速型式单级双级等以及是否需要轮边减速器,并使之与汽车总布置所要求的离地间隙相适应。把.,代入式.计算出暂定.,根据主减速比的取值范围,确定主减速器的减速形式为单级主减速器。主减速器齿轮计算载荷的确定汽车主减速器锥齿轮有格里森和奥利康两种切齿方法,本设计中按照格里森齿制锥齿轮计算载荷。按发动机最大转矩和最低档传动比确定从动锥齿轮的计算转矩.式中计算转矩发动机最大转矩.计算驱动桥数分动器传动比主减速器传动比,.η变速器传动效率,η.液力变矩器变矩系数由于猛接离合器而产生的动载系数变速器最低挡传动比,.代入式.,有.按驱动车轮打滑转矩确定从动锥齿轮的计算转矩......”。
5、“.....避免轮胎与地面间打滑。差速器按其结构特征可分为齿轮式凸轮式蜗轮式和牙嵌自由轮式等多种形式。汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单质量较小等优点,应用广泛。它可分为普通锥齿轮式差速器摩擦片式差速器和强制锁止式差速器。普通齿轮式差速器的传动机构为齿轮式。齿轮差速器要圆锥齿轮式和圆柱齿轮式两种。强制锁止式差速器就是在对称式锥齿轮差速器上设置差速锁。当侧驱动轮滑转时,可利用差速锁使差速器不起差速作用。差速锁在军用汽车上应用较广。经方案论证,差速器结构形式选择对称式圆锥行星齿轮差速器。普通的对称式圆锥行星齿轮差速器由差速器左右壳,个半轴齿轮,个行星齿轮少数汽车采用个行星齿轮,小型微型汽车多采用个行星齿轮,行星齿轮轴不少装个行星齿轮的差速器采用十字轴结构,半轴齿轮及行星齿轮垫片等组成。由于其结构简单工作平稳制造方便用在公路汽车上也很可靠等优点,最广泛地用在轿车客车和各种公路用载货汽车上.有些越野汽车也采用了这种结构......”。
6、“.....例如加进摩擦元件以增大其内摩擦,提高其锁紧系数或加装可操纵的能强制锁住差速器的装置差速锁等。驱动车轮传动装置的结构形式驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中,驱动车轮的传动装置包括半轴和万向节传动装置且多采用等速万向节。在般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半轴齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。普通非断开式驱动桥的半轴,根据其外端的支承型式或受力状况的不同而分为半浮式浮式和全浮式三种。半浮式半轴以靠近外端的轴颈直接支承在置于桥壳外端内孔中的轴承上,而端部则以具有锥面的轴颈及键与车轮轮毂相固定,或以突缘直接与车轮轮盘及制动鼓相联接。因此,半浮式半轴除传递转矩外,还要承受车轮传来的弯矩。由此可见,半浮式半轴承受的载荷复杂,但它具有结构简单质量小尺寸紧凑造价低廉等优点。用于质量较小使用条件较好承载负荷也不大的轿车和轻型载货汽车......”。
7、“.....直接支承着车轮轮毂,而半轴则以其端部与轮毂相固定。由于个轴承的支承刚度较差,因此这种半轴除承受全部转矩外,弯矩得由半轴及半轴套管共同承受,即浮式半轴还得承受部分弯矩,后者的比例大小依轴承的结构型式及其支承刚度半轴的刚度等因素决定。侧向力引起的弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命。可用于轿车和轻型载货汽车,但未得到推广。全浮式半轴的外端与轮毂相联,而轮毂又由对轴承支承于桥壳的半轴套管上。多采用对圆锥滚子轴承支承轮毂,且两轴承的圆锥滚子小端应相向安装并有定的预紧,调好后由锁紧螺母予以锁紧,很少采用球轴承的结构方案。由于车轮所承受的垂向力纵向力和侧向力以及由它们引起的弯矩都经过轮毂轮毂轴承传给桥壳,故全浮式半轴在理论上只承受转矩而不承受弯矩。但在实际工作中由于加工和装配精度的影响及桥壳与轴承支承刚度的不足等原因,仍可能使全浮式半轴在实际使用条件下承受定的弯矩,弯曲应力约为。具有全浮式半轴的驱动桥的外端结构较复杂,需采用形状复杂且质量及尺寸都较大的轮毂,制造成本较高......”。
8、“.....但由于其工作可靠,故广泛用于轻型以上的各类汽车上。驱动桥桥壳的结构形式驱动桥桥壳是汽车上的主要零件之,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮.作用在驱动车轮上的牵引力,制动力侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此桥壳既是承载件又是传力件,同时它又是主减速器差速器及驱动车轮传动装置如半轴的外壳。速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器差速器与传动轴及部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度......”。
9、“.....提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的部分轿车及些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。多桥驱动的布置为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳半轴等主要零件不能通用。而对汽车来说,这种非贯通式驱动桥就更不适宜,也难于布置了。为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置型式。在贯通式驱动桥的布置中,各桥的传动轴布置在同纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的......”。
[定稿]4吨轻型载货汽车驱动桥设计开题报告.doc
[定稿]4吨轻型载货汽车驱动桥设计说明书.doc
CAD-衬套A3.dwg
(CAD图纸)
CAD-导向套A3.dwg
(CAD图纸)
CAD-固定座导向套A3.dwg
(CAD图纸)
CAD-后桥半轴套管凸缘A3.dwg
(CAD图纸)
CAD-后桥壳A0.dwg
(CAD图纸)
CAD-后桥壳盖A1.dwg
(CAD图纸)
CAD-后桥装配图A0.dwg
(CAD图纸)
CAD-轮毂A2.dwg
(CAD图纸)