帮帮文库

返回

(终稿)【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc(最终版) (终稿)【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc(最终版)

格式:word 上传:2025-12-27 20:35:04
以因为代入上式,得定值设的中点为分别过,作准线的垂线,垂足为过作准线的垂线,垂足为,则所以以为直径的圆与抛物线的准线相切题型三直线与抛物线的综合问题命题点直线与抛物线的交点问题例已知抛物线与点过的焦点且斜率为的直线与交于两点若,则答案解析抛物线的焦点为则直线方程为,与抛物线方程联立,消去化简得设点,则,所以,因为将上面各个量代入,化简得,所以命题点与抛物线弦的中点有关的问题例浙江如图,已知的三个顶点都在抛物线上,为抛物线的焦点,点为的中点,若,求点的坐标求面积的最大值解由题意知焦点准线方程为设由抛物线定义知,得到,所以,或,由得,或,设直线的方程为,点从而,又故直线的方程为从而又直线的方程为所以点到直线的距离这表明以点为圆心且与直线相切的圆必与直线相切步步高江苏专用版高考数学轮复习第九章平面解析几何抛物线文抛物线的概念平面内到个定点和条定直线不在上的距离相等的点的轨迹叫做抛物线,定点叫做抛物线的焦点,定直线叫做抛物线的准线抛物线的标准方程与几何性质标准方程的几何意义焦点到准线的距离图形顶点,对称轴焦点,,,,离心率准线方程范围,∈,∈,∈,∈开口方向向右向左向上向下知识拓展抛物线上点,到焦点,的距离,也称为抛物线的焦半径的焦点坐标为准线方程为思考辨析判断下面结论是否正确请在括号中打或平面内与个定点和条定直线的距离相等的点的轨迹定是抛物线方程≠表示的曲线是焦点在轴上的抛物线,且其焦点坐标是准线方程是抛物线既是中心对称图形,又是轴对称图形为抛物线的过焦点,的弦,若则弦长过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线的通径长为陕西改编已知抛物线的准线经过点则该抛物线焦点坐标为答案,解析由于抛物线的准线方程为,由题意得焦点坐标为,已知抛物线的焦点为是上点则答案解析由,这是解决抛物线焦点弦有关问题的重要途径设抛物线的焦点为,经过点,的直线与抛物线相交于,两点,又知点恰为的中点,则设是抛物线上的个动点,若则的最小值为答案解析分别过点作准线的垂线,垂足分别为,根据抛物线上的点到焦点的距离等于该点到准线的距离,得如图,过点作垂直准线于,交抛物线于点,则则有即的最小值为题型二抛物线的标准方程和几何性质命题点求抛物线的标准方程例已知双曲线的离心率为若抛物线的焦点到双曲线的渐近线的距离为,则抛物线的方程为答案解析的离心率为即的焦点坐标为的渐近线方程为,即由题意得,故的方程为命题点抛物线的几何性质例过抛物线的焦点的直线交该抛物线于,两点,为坐标原点若,则的面积为答案解析由题意设,如图所示,设的方程为,由,消去得思维升华求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置开口方向,在方程的类型已经确定的前提下,由于标准方程只有个参数,只需个条件就可以确定抛物线的标准方程在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象直观的特点来解题,特别是涉及焦点顶点准线的问题更是如此陕西若抛物线的准线经过双曲线的个焦点,则答案解析由于双曲线的焦点为故应有,已知抛抛物线的定义,可得,已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线焦点的距离为,则答案解析设抛物线方程为,则点焦点点到该抛物线焦点的距离为,,解得负值舍去,故教材改编已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点则该抛物线的标准方程为答案或解析设抛物线方程为≠,或≠将,代入,分别得方程为或已知点,在抛物线的准线上,过点的直线与在第象限相切于点,记的焦点为,则直线的斜率为答案解析,在抛物线的准线上设直线的方程为,将与联立,即得,则,即,解得或舍去,将代入解得即又题型抛物线的定义及应用例已知抛物线的焦点是,点是抛物线上的动点,又有点求的最小值,并求出取最小值时点的坐标解将代入抛物线方程,得,在抛物线内部,如图设抛物线上点到准线的距离为,由定义知,当⊥时,最小,最小值为,即的最小值为,此时点纵坐标为,代入,得,点的坐标为,引申探究将本例中点的坐标改为求的最小值解当共线时,最小,即的最小值为思维升华与抛物线有关的最值问题,般情况下都与抛物线的定义有关由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有定的难度看到准线想焦点,看到焦点想准线的焦点为,其准线与双曲线相交于两点,若为等边三角形,则答案解析由题意知代入方程得如图,过抛物线的焦点的直线交抛物线于点,交其准线于点,若,且,则此抛物线的方程为答案解析如图,分别过作⊥于,⊥于,由抛物线的定义知连结,则为等边三角形,过作⊥于,则为的中点,设交轴于,则,即,抛物线方程为已知条过点,的直线与抛物线交于,两点,且是弦的中点,则直线的方程为答案解析依题意,设点则有两式相减得,即,直线的斜率为,直线的方程是,即如图,已知抛物线有个内接直角三角形,直角顶点在原点,两直角边与的长分别为和,求抛物线的方程解设直线的方程为,≠,则直线的方程为,由得或点坐标为同理得点坐标为由可得,得,即则又,则,故所求抛物线方程为抛物线的焦点为,过点的直线交抛物线于,两点若,求直线的斜率设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值解依题意知设直线的方程为将直线的方程与抛物线的方程联立,消去得设所平行线与直线相交于点为坐标原点证明动点在定直线上作的任意条切线不含轴,与直线相交于点,与中的定直线相交于点,证明为定值,并求此定值证明依题意可设方程为,代入,得,即设则有直线的方程为的方程为解得交点的坐标为注意到及,则有因此点在定直线上≠解依题设,切线的斜率存在且不等于,设切线的方程为≠,代入得,即由得,化简整理得故切线的方程可写为分别令,得,的坐标为则,即为定值福建已知点为抛物线的焦点,点,在抛物线上,且求抛物线的方程已知点延长交抛物线于点,证明以点为圆心且与直线相切的圆,必与直线相切方法解由抛物线的定义得因为,即,解得,所以抛物线的方程为证明因为点,在抛物线上,所以,由抛物线的对称性,不妨设,由,可得直线的方程为由,得,解得或,从而,又所以,所以,从而,这表明点到直线,的距离相等,故以为圆心且与直线相切的圆必与直线相切方法二解同方法证明设以点为圆心且与直线相切的圆的半径为因为点,在抛物线上,所以,由抛物线的对称性,不妨设,由,可得直线的方程为由,得解得或以,因为,所以联立和,消去得所以直线的斜率是由点与原点关于点对称,得是线段的中点,从而点与点到直线的距离相等,所以四边形的面积等于因为,所以当时,四边形的面积最小,最小值是组专项能力提升时间分钟四川改编设直线与抛物线相交于,两点,与圆相切于点,且为线段的中点,若这样的直线恰有条,则的取值范围是答案,解析设则相减得,当的斜率不存在时,符合条件的直线必有两条当直线的斜率存在时,如图≠,则有,即,由⊥得,即必在直线上,将代入,得点在圆上,又已知抛物线的焦点为,准线为,过抛物线上的点作准线的垂线,垂足为,若与其中为坐标原点的面积之比为∶,则点的坐标为
下一篇
温馨提示:手指轻点页面,可唤醒全屏阅读模式,左右滑动可以翻页。
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(1)
1 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(2)
2 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(3)
3 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(4)
4 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(5)
5 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(6)
6 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(7)
7 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(8)
8 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(9)
9 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(10)
10 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(11)
11 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(12)
12 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(13)
13 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(14)
14 页 / 共 21
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.7 抛物线 文.doc预览图(15)
15 页 / 共 21
预览结束,还剩 6 页未读
阅读全文需用电脑访问
温馨提示 电脑下载 投诉举报

1、手机端页面文档仅支持阅读 15 页,超过 15 页的文档需使用电脑才能全文阅读。

2、下载的内容跟在线预览是一致的,下载后除PDF外均可任意编辑、修改。

3、所有文档均不包含其他附件,文中所提的附件、附录,在线看不到的下载也不会有。

  • Hi,我是你的文档小助手!
    你可以按格式查找相似内容哟
DOC PPT RAR 精品 全部
小贴士:
  • 🔯 当前文档为word文档,建议你点击DOC查看当前文档的相似文档。
  • ⭐ 查询的内容是以当前文档的标题进行精准匹配找到的结果,如果你对结果不满意,可以在顶部的搜索输入框输入关健词进行。
帮帮文库
换一批

搜索

客服

足迹

下载文档