帮帮文库

返回

基于SolidWorks四足步行机器人腿的机构设计(全套完整有CAD) 基于SolidWorks四足步行机器人腿的机构设计(全套完整有CAD)

格式:RAR 上传:2022-06-25 05:52:15
(终稿)基于SolidWorks四足步行机器人腿的机构设计(全套完整有CAD)CAD截图01
本资源为压缩包,下载后将获得以下全套资料(图纸+论文+其他)

毕业设计(论文)开题报告.doc 毕业设计(论文)开题报告.doc

设计工程图.dwg 设计工程图.dwg (CAD图纸)

设计工程图.exb 设计工程图.exb

设计论文.doc 设计论文.doc

设计任务书.doc 设计任务书.doc

设计中期汇报表.doc 设计中期汇报表.doc

内容摘要(随机读取):

1、,杆长为,其与的延长线的夹角为点为大腿杆的旋转点,杆长为,其与的延长线的夹角为由此可推出点的运动轨迹方程为其中从所周知,当四杆机构的二杆重合时,机构将会出现死点,为了防止四杆机构存在死点位置,通常的做法是规定个小腿杆与大腿杆的最小夹角和最大夹角,即在大小腿杆之间的夹角在任何情况下均要满足以下约束条件。正是由于这种限制,大小腿的运动受到很大的限制,组成了平面运动机构。另外,平面四杆机构有图系列四足步行机器人除了世界各地的研究机构和高效实验室研制的用于科学实验的四足机器人之外,人们还出于商业目的,开发了多种四足步行机器人。最为典型的是公司推出的四足步行机器人,如图所示,该机器人每条腿,采用平面四杆缩放机构,具有二个自由度,机器人能前向后腿,左转和右转,并预留有的记忆体可供客户做进步的机器人实验和开发利用。图的四足步行机器人国内具有代表性的采用四足机构的机器人主要包括如图所示为上海交。

2、,为了克服开链机构的缺陷,发展了闭链机构。闭链机构刚性好,承载能力大,功耗较小,但工作空间有局限性,分析比较,本文选择闭链腿机构进行研究。闭链腿机构应用最广的是平面闭链机构。带平面闭链机构的步行机构多采用双层机架实现转向,也可以在平面闭链机构再增加个摆动自由度来实现转向。腿机构运动要求的必要条件是机构所含运动副是转动副或移动副机构的自由度不能大于机构的杆件数目不宜太多须有连杆曲线为直线的点足机构上的点,相对于机身高度是可变的机构需有腿的基本形状。腿机构的性能要求有推进运动抬腿运动最好是独立的机构的输入和输出运动关系应尽可能简单平面连杆机构不能与其他关节发生干涉实现直线运动的近似程度,不能因直线位置的改变而发生较大的变化。全部满足上述各项条件的腿部机构是困难的,在设计时,应以尽可能满足以上条件的腿部机构为努力目标,同时选择或设计最适合的步行腿机构。目前常用的腿机构有以下几种形式埃。

3、位置对应的值为,所以可求得由上式可知,对于不同的高度值,足端的运动空间在平面中产生类似椭圆曲线的轨迹,当髋关节转动时,将形成三维的运动空间,如图所示。图小腿的摆动约束图足端运动空间闭环平面四杆机构此种形式的机构能够克服开链式结构承载能力低的缺点,具有较好的刚性,并且功耗较小,有着较广泛的应用。如图所示为种常见的闭环平面四杆步行机构,其中轴驱动器用于承担机体的重量或升降机体,而和轴驱动器用于推动机体前进,简化了协调控制。缩放式腿部结构具有比例特性,可将驱动器的推动距离按比例放大为足端运动距离,其缺点是无论是圆柱坐标还是直角坐标的缩放机构,都至少需要二个线性驱动关节,使得机械结构较大,质量较重,而且机器人足端的运动范围受驱动距离的限制,难以得到大的运动空间。图平面四杆步行机构图平面四杆步行机构坐标系模型我们建立如图所示的坐标系模型。点髋关节,绕轴转动,转角为,悬长为点为大腿杆的旋转。

4、是步行机器人的重要组成部分,在设计腿机构时,要求腿机构能够实现运动和承载的功能,同时又要满足结构简单方便控制的要求。机器人的腿机构主要分为开式链机构和闭式链机构。开式链机构结构简单,工作空间大,但承载能力小闭式链机构刚性好,承载能力大,功耗小,但工作空间小。腿机构应满足以下要求从运动角度出发,足端相对与机身应走直线轨迹,为了在不平坦地面行走,腿的伸长应该是可变的从整体的行走性能出发,方面要求机体能走出直线运动轨迹或平面曲线轨迹在严重崎岖不平地面,另方面要求转向从承受载荷方面,腿机构应具备与整机重量想适应的刚性和承载能力从机构设计要求方面,腿机构不能过于复杂,杆件数量多的腿机构形式,会导致结构复杂难以实现。因此,腿机构设计需要保证实现运动承载能力要求结构易实现和方便控制。行走机构的腿机构分为开链机构和闭链机构两大类。开链机构的特点是工作空间大,结构简单,但承载能力小,刚度和精度差。

5、大小腿运动平面所垂直的轴旋转,大腿杆长为第三个驱动关节为小腿关节,在点围绕与大小腿运动平面垂直的轴转动,小腿杆长度为。同时规定逆时针为正向角。图开环连杆步行机构图开环连杆机构坐标系模型如图所示,当机构运动到位置时,设髋关节驱动转动角为,大腿关节驱动转角为,小腿杆驱动转角为,由上图可以建立足端点的运动轨迹方程其中由上式以及图形可知,小腿杆可以在转过大臂上部空间运动类似于人的小臂运动,所以在运动过程中,由于臂的末端点可达区域比较大,当髋关节转动时,机构的运动空间将实现三维椭圆状。但是采用此机构用作步行机构,在机器人行驶时,足端的运动范围并不是覆盖了整个可达运动空间,不可能在转过大腿杆时仍能够到达所有区域。综上所述的原因,小腿与地面法线的夹角要在定的范围之内。如图所示,就将存在小腿的最大转动角度和小腿最大内向顺时针驱动角度,此时小腿的摆动约束可表示为,又有角的求解公式为令小腿杆在二极。

6、通大学所研制的二种四足步行机器人,所示的四足步行机器人为采用平面四杆机构作为其步行机构,可以实现跨越障碍,沟槽,上下台阶及通过高低不平的地面有定识别及步态调整能力所示的四足步行机器人也是由上海交通大学研制的关节式哺乳动物型步行机器人。机器人的长宽高分别为厘米厘米厘米,重.千克,腿为开式链关节型结构,膝关节为纵摇自由度,髋关节为纵摇和横摇两个自由度,各自由度由直流电机经谐波齿轮驱动,用电位器测速电机作为位置和速度传感器,脚底为直径厘米的圆盘,是个被动的纵摇自由度。该机器人为足式机器人的经典结构,但速度缓慢,步行速度.千米时。图上海交通大学的二种四足步行机器人清华大学机器人实验室研制的全方位四足步行机器人,如图所示,它采用平面四杆缩放机构作为其步行机构,在足端被安装压力传感器,能够实现全方位步行图所示为清华大学所研制的另种四足步行机器人,它采用开环关节连杆机构作为其步行机构,通过模。

7、斯机构,正缩放机构,斜缩放机构和拟缩放机构。如图也叫步态,动物在快跑时两条前腿或后腿同时跳起的步态。四足步行机构常用的步态还有爬行步态,四足匍匐步态,四足倾斜步态,四足旋转步态和四足姿态变化步态,等等。二步态的选择基于本设计对腿的要求及整个机体的选择和个电机的选择配合蜗杆的使用等原因,所以选择态步行中的步态,既处于对角线上的两条腿动作完全样,均处于摆动相或均处于支撑相,简称对角小跑步态。三步态的设计步态设计是实现动态步行的关键之,为达到较理想的动态步行,考虑下列要求步行平稳协调进退自如,无左右摆晃及前后冲击机体和关节间没有较大的冲击,特别是在摆动腿着地时,与地面接触为软着陆。机体保持与地面平行,且始终以等高运动,没有明显的上下波动。摆动腿跨步迅速,腿部运动轨迹圆滑,关节速度和加速度轨迹无畸点。占空系数腿部动作和占空系数步态的特点是处于对角线上的两条腿或者.具有相同相位,既对角线。

8、得到应用。.步行机器人研发现状上世纪年代,由于生物学控制理论和电子技术的发展,人们开始对类人行走进行系统的研究,和村洋高滨逸郎等人从生理学角度来分析人类的行走,期望对临床应用假肢设计提供资料。等人从模拟人的双足步行机械出发,对步行机器人的数学模型控制算法和步行稳定性能量分析等问题进行了研究,特别是他所提出的零力矩点概念已经被广泛地应用在腿式机器人的控制中。真正从工程角度对步行机器人进行研究并首次获得成功的是早稻田大学的.教授等人,他们于年推出了.双足步行机器入可以实现步幅为,每步约秒的静态行走。实验室的成功推动了步行控制技术的飞速发展。近三十年来,步行机器人技术得到飞速的发展。从最初的静态行走只能在平面上行走发展到拟动态行走动态行走斜坡上的行走甚至实现跑步。动态行走是步行机器人提高行走速度和研究的必然发展方向。如图所示为通用电气公司的和美国陆军的起设计开发的四足步行车“”。具有。

9、两腿的动作完全样,同时抬起,同时放下。图为个步行周期中四足机器人的摆动相与支撑相的交替过程。根据占空系数的大小可分为种情况.在两摆动腿着地的同时,另外两支撑腿立即抬起。此情况为特例。既任意时刻同时有支撑相和摆动相见图。机器人移动较慢时,摆动相与支撑相有短暂的重叠过程,即机器人有四腿同时着地状态见图。机器人移动较快时,四条腿有同时为摆动相时刻,四条腿同在空中,尤如马奔跑时腾空状态见图。显然此交替过程要求机器人机构具有弹性和消振功能,否则难以实现,尚有待引入弹性机构。本文研究.时的状态。图占空系数示意图二腿摆动跨步与机体重心移动顺序起始时对角线上两摆动腿,抬起向前摆动,另两条腿,支撑机体确保行走机构原有重心位置在其支撑腿的对角线上见图,摆动腿,向前跨步造成重心前移见图,此时机器人有摔倒趋势。支撑腿关节为髋关节,在点围绕轴旋转,髋关节的旋转半径设为第二个驱动关节为大腿关节,在点围绕着。

10、并不理想。其中,以行走机构较为常见,比如哈尔滨工业大学自主研发的四足机器人来踢足球,几个机器人在小场地上模拟人的足球比赛规则来进行比赛,看来显得妙趣横生。步行机器人是门集仿生学机械学及控制工程学等多学科融合交汇的综合性的学科,不仅涉及到线性非线性基于多种传感器信息控制以及实时控制技术,而且还囊括了复杂机电系统的建模数字仿真技术及混合系统的控制研究等方面的要求。步行是入与大多数动物所具有的移动方式,是种高度自动化的运动。对于环境具有很强的适应性,相对于轮式履带式及蠕动式移动方式而言,具有更广阔的应用前景。我们从事步行机器人的研究工作,并不是为了追求对复杂系统的研究,而是因为步行机器人的确具有广泛的应用前景,例如在取代危险环境下人类的工作工厂的维护和不平整地面的货物搬运以及灾害救助等方面。另外,随着社会老龄化程度的不断加深,在护理老人康复医学以及在般家庭的家政服务等方面步行机器人也。

11、克运输能力乘坐名驾驶员高度.米质量千克的步行机械系统。该步行车的四个指令杆跟随驾驶员的手和脚动作的液压驱动随动系统,并安装在驾驶员手臂和脚上的位置传感器检测基于步行,机器人,机构,设计,毕业设计,全套,图纸基于四足步行机器人腿机构设计学生姓名马超指导教师刘天祥所在学院工程学院专业机械设计制造及其自动化中国•大庆年月摘要本文介绍了国内外四足步行机器人的发展状况和三维制图软件的应用,着重分析了设计思想并对行走方式进行了设计并在此软件基础上四足步行机器人腿进行了绘制,对已绘制的零部件进行了装配和三维展示。展示了强大的三维制图和分析功能。同时结合模仿四足动物形态展示出了本次设计。对设计的四足行走机器人腿进行了详细的分析与总结得出了该机构的优缺点。本文对四足机器人腿的单腿结构分析比较详细,并结合三维进行理性的理解。关键词四足步行机器人腿绪论.步行机器人的概述.步行机器人研发现状.存在的问。

12、动物的运动机理,实现比较稳定的节律运动,可以自主应付复杂的地形条件,完成上下坡越障等功能。图清华大学的二种四足步行机器人综上所述,随着控制理论计算机技术以及多传感器信息融合技术的发展,世界机器人发达国家的学者在步行机器人技术的理论和实验上作了大量的研究,这种现象的出现最可能的解释是步行机器人具有更强的机动性和灵活性,具有更广阔的应用前景。.存在的问题在处理多自由度的步行机器人运动控制中,的确很难将这些方法应用与机器人的运动控制中。基于行为的控制策略在处理多自由度步行机器人这类复杂系统时,行为规则的设计十分困难。因为多关节步行机器人运动学远比轮式移动机器人复杂,建立多关节步行机器人的传感空间到关节运动空间的映射非常困难。基于高层规划的控制方式虽己应用于多足步行机器人的步行控制。但随着步行机器人自由度数的增加,系统模型的建立成为控制系统设计中最为繁琐耗时和困难的环节,而且模型的可靠。

参考资料:

[1](终稿)基于SolidWorks六自由度焊接机械手三维运动模拟设计(全套完整有CAD)(第2355165页,发表于2022-06-25)

[2]基于S7200PLC步进电机调速控制步进驱动控制系统设计(全套完整有CAD)(第2355163页,发表于2022-06-25)

[3](终稿)基于ProE的轻型汽车曲轴工艺规程编制及改进设计(全套完整有CAD)(第2355162页,发表于2022-06-25)

[4](终稿)基于PROE的豆浆机杯体注塑模具的设计及凹模的加工仿真设计(全套完整有CAD)(第2355161页,发表于2022-06-25)

[5](终稿)基于proe的计算机硬盘托架冲压工艺及模具设计(全套完整有CAD)(第2355160页,发表于2022-06-25)

[6](终稿)基于ProE的装载机工作装置的实体建模及运动仿真设计(全套完整有CAD)(第2355159页,发表于2022-06-25)

[7](终稿)基于ProE的蒸汽电熨斗的设计(全套完整有CAD)(第2355158页,发表于2022-06-25)

[8](终稿)基于ProE的水果篮注塑模具设计(全套完整有CAD)(第2355156页,发表于2022-06-25)

[9]基于ProE的接水盒注塑模具设计(全套完整有CAD)(第2355154页,发表于2022-06-25)

[10]基于ProE的接水盒注塑模具设计(全套完整有CAD)(第2355153页,发表于2022-06-25)

[11](终稿)基于ProE的便携式手机充电器上盖的注塑模设计(全套完整有CAD)(第2355151页,发表于2022-06-25)

[12](终稿)基于proe的二级减速器设计(全套完整有CAD)(第2355150页,发表于2022-06-25)

[13](终稿)基于ProE及ANSYS的载货汽车主减速器结构设计(全套完整有CAD)(第2355148页,发表于2022-06-25)

[14](终稿)基于ProE及ANSYS的轻型载货汽车车架结构设计(全套完整有CAD)(第2355146页,发表于2022-06-25)

[15](终稿)基于ProE与ANSYS的长城赛影轿车变速器设计(全套完整有CAD)(第2355145页,发表于2022-06-25)

[16](终稿)基于PLC高速全自动包装机的控制系统应用设计(全套完整有CAD)(第2355144页,发表于2022-06-25)

[17](终稿)基于PLC逻辑顺序控制的平衡臂机械手液压系统设计(全套完整有CAD)(第2355142页,发表于2022-06-25)

[18](终稿)基于plc的轧辊车床触摸屏控制系统设计(全套完整有CAD)(第2355140页,发表于2022-06-25)

[19]基于PLC的电梯控制系统设计(全套完整有CAD)(第2355139页,发表于2022-06-25)

[20](终稿)基于PLC的物料分拣机械手自动化控制系统设计(全套完整有CAD)(第2355138页,发表于2022-06-25)

仅支持预览图纸,请谨慎下载!
基于SolidWorks四足步行机器人腿的机构设计(全套完整有CAD)
帮帮文库
页面跳转中,请稍等....
帮帮文库

搜索

客服

足迹

下载文档